17.已知雙曲線以銳角△ABC的頂點(diǎn)B,C為焦點(diǎn),且經(jīng)過點(diǎn)A,若△ABC內(nèi)角的對(duì)邊分別為a、b、c,且a=2,b=3,$\frac{csinA}{a}$=$\frac{\sqrt{3}}{2}$,則此雙曲線的離心率為(  )
A.$\frac{3+\sqrt{7}}{2}$B.$\frac{3-\sqrt{7}}{2}$C.3-$\sqrt{7}$D.3+$\sqrt{7}$

分析 運(yùn)用正弦定理,可得C=$\frac{π}{3}$,再由余弦定理可得c=$\sqrt{7}$,運(yùn)用雙曲線的定義可得實(shí)軸長(zhǎng)為||AB|-|AC||,運(yùn)用離心率公式即可得到所求.

解答 解:由正弦定理可得,sinC=$\frac{csinA}{a}$=$\frac{\sqrt{3}}{2}$,
由于銳角△ABC,可得C=$\frac{π}{3}$,
由余弦定理可得c2=a2+b2-2abcosC=4+9-2×2×3×$\frac{1}{2}$=7,
解得c=$\sqrt{7}$,
由雙曲線的定義可得實(shí)軸長(zhǎng)為||AB|-|AC||=3-$\sqrt{7}$,又|BC|=2,
故離心率為e=$\frac{2}{3-\sqrt{7}}$=3+$\sqrt{7}$.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用正弦定理和余弦定理,以及雙曲線的定義,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的一條漸近線為x+$\sqrt{2}$y=0,則離心率e=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的斜率為-2,則C的離心率e=(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)F1,F(xiàn)2分別是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使得(${\overrightarrow{OP}$+$\overrightarrow{O{F_2}}}$)•$\overrightarrow{{F_2}P}$=0,其中O為坐標(biāo)原點(diǎn),且|${\overrightarrow{P{F_1}}}$|=2|${\overrightarrow{P{F_2}}}$|,則該雙曲線的離心率為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$+1C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線y=2x是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線,點(diǎn)A(1,0),M(m,n)(n≠0)都在雙曲線C上,直線AM與y軸相交于點(diǎn)P,設(shè)坐標(biāo)原點(diǎn)為O.
(1)求雙曲線C的方程,并求出點(diǎn)P的坐標(biāo)(用m,n表示);
(2)設(shè)點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為N,直線AN與y軸相交于點(diǎn)Q,問:在x軸上是否存在定點(diǎn)T,使得TP⊥TQ?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若過點(diǎn)D(0,2)的直線l與雙曲線C交于R,S兩點(diǎn),且|$\overrightarrow{OR}$+$\overrightarrow{OS}$|=|$\overrightarrow{RS}$|,試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,x=0是極值點(diǎn)的函數(shù)是(  )
A.y=-x3B.y=x2C.y=tanx-xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的一條漸近線l的傾斜角為$\frac{π}{3}$,且C的一個(gè)焦點(diǎn)到l的距離為$\sqrt{3}$,則C的方程為x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.當(dāng)φ=$\frac{π}{2}$,$\frac{3π}{2}$時(shí),求出漸開線$\left\{\begin{array}{l}{x=cosφ+φsinφ}\\{y=sinφ-φcosφ}\end{array}\right.$上的對(duì)應(yīng)點(diǎn)A,B,并求出點(diǎn)A,B間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)兩條漸近線的夾角為60°,則該雙曲線的離心率為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{4}{3}$C.$\frac{{2\sqrt{3}}}{3}$或2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案