A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
分析 求出A,B的坐標(biāo),令x=c代入雙曲線的方程可得C,D的坐標(biāo),運(yùn)用兩直線垂直的條件:斜率之積為-1,化簡(jiǎn)可得a=b,求得c,由離心率公式計(jì)算即可得到所求值.
解答 解:由題意可得A(-a,0),B(a,0),
令x=c,則y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{^{2}}{a}$,
可得C(c,$\frac{^{2}}{a}$),D(c,-$\frac{^{2}}{a}$),
由AC⊥BD,可得kAC•kBD=-1,
即有$\frac{\frac{^{2}}{a}}{c+a}$•$\frac{-\frac{^{2}}{a}}{c-a}$=-1,
化簡(jiǎn)可得$\frac{^{4}}{{a}^{2}}$=c2-a2=b2,
即有a=b,c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{2}$a,
可得e=$\frac{c}{a}$=$\sqrt{2}$.
故選:D.
點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用兩直線垂直的條件:斜率之積為-1,考查化簡(jiǎn)整理的運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | $\frac{5}{4}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-1)2+y2=4 | B. | (x+1)2+y2=2 | C. | (x+1)2+y2=1 | D. | (x+1)2+y2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個(gè)單位 | B. | 向右平移$\frac{π}{3}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{6}$個(gè)單位 | D. | 向右平移$\frac{π}{6}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$+1 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com