16.將一條繩索繞在半徑為40cm的輪子上,繩索的下端B處懸掛著物體W,且輪子按逆時針方向每分鐘勻速旋轉(zhuǎn)6圈,現(xiàn)在想將物體W的位置向上提升100cm,需要多長時間才能完成?

分析 計算即輪圈轉(zhuǎn)一圈即旋轉(zhuǎn)角度為360度所需的時間,再利用公式角度乘以半徑等于周長,求出旋轉(zhuǎn)過周長為100cm對應(yīng)角度,即可得出結(jié)論.

解答 解:先算出輪圈轉(zhuǎn)一圈所需時間,60s÷6=10s,即輪圈轉(zhuǎn)一圈即旋轉(zhuǎn)角度為360度所需的時間.
當(dāng)繩子上升100cm時,即旋轉(zhuǎn)過周長為100cm,對應(yīng)角度為α,
利用公式角度乘以半徑等于周長,可求出α=$\frac{100}{40}$,
∴把物體W的位置向上提升100cm,所需時間為$\frac{\frac{100}{40}}{2π}$×10=$\frac{25}{2π}$.

點評 本題考查利用三角函數(shù)知識解決實際問題,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,x∈R.
(1)求函數(shù)y=f(-3x)+1的最小正周期和單調(diào)遞減區(qū)間;
(2)已知銳角△ABC中的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=7,sinB+sinC=$\frac{13}{7}$sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題?x∈R,cosx≤1的真假判斷及其否定是(  )
A.真,?x0∈R,cosx0>1B.真,?x∈R,cosx>1
C.假,?x0∈R,cosx0>1D.假,?x∈R,cosx>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…類比得$\sqrt{m+\frac{n}{t}}$=m$\sqrt{\frac{n}{t}}$(m,n,t均為正整數(shù)),則關(guān)于正整數(shù)m的不等式tn+4m<4m2解的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某射擊運動員進(jìn)行射擊訓(xùn)練.每次擊中目標(biāo)的概率為0.9.
(1)求該運動員射擊二次都擊中目標(biāo)的概率;
(2)求該運動員射擊二次至少有一次擊中目標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若集合A={1,2,3,4,5},集合B={1,2,3},試寫出C=A∩B所有的子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,已知△ABC是邊長為2的正三角形,O是它的中心,過點O作BC平行的平面α,分別交AB,AC于點D,E,則四邊形BCED的面積是( 。
A.$\frac{5\sqrt{3}}{9}$B.$\frac{4\sqrt{3}}{9}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在等差數(shù)列{an}中,a6=9,a3=3a2,則a1等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,建立平面直角坐標(biāo)系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米,某炮位于坐標(biāo)原點.已知炮彈發(fā)射后的軌跡在方程$y=kx-\frac{1}{20}(1+{k^2}){x^2}(k>0)$表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標(biāo).
(1)當(dāng)k=2時,求炮的射程;
(2)求炮的最大射程;
(3)設(shè)在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問它的橫坐標(biāo)a不超過多少時,炮彈可以其中它?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案