分析 求導(dǎo),確定g(x)在(0,$\frac{1}{3}$),($\frac{1}{3}$,1),(1,+∞)上分別有零點(diǎn),f(x)=ax2-2ax+a+1=a(x-1)2+1≥1,可得f(x)在(0,$\frac{1}{3}$)上無根,在($\frac{1}{3}$,1),(1,+∞)上分別有兩個(gè)根,即可得出y=g[f(x)]的零點(diǎn)個(gè)數(shù).
解答 解:∵g(x)=bx3-2bx2+bx-$\frac{4}{27}$,∴g′(x)=b(3x-1)(x-1)
∴g(x)的單調(diào)增區(qū)間是(0,$\frac{1}{3}$),(1,+∞),單調(diào)減區(qū)間是($\frac{1}{3}$,1),
∵g(0)g($\frac{1}{3}$)<0,g($\frac{1}{3}$)g(1)<0,
∴g(x)在(0,$\frac{1}{3}$),($\frac{1}{3}$,1),(1,+∞)上分別有零點(diǎn),
∵f(x)=ax2-2ax+a+1=a(x-1)2+1≥1,
∴f(x)在(0,$\frac{1}{3}$),($\frac{1}{3}$,1)上無根,在 (1,+∞)上分別有兩個(gè)根,
∴y=g[f(x)]的零點(diǎn)個(gè)數(shù)為2.
故答案為:2.
點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn),考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 2π | C. | 3π | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2] | B. | [1,3] | C. | [0,3] | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè)極大值點(diǎn),2個(gè)極小值點(diǎn) | B. | 2個(gè)極大值點(diǎn),1個(gè)極小值點(diǎn) | ||
C. | 3個(gè)極大值點(diǎn),無極小值點(diǎn) | D. | 3個(gè)極小值點(diǎn),無極大值點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com