甲 | 乙 | 丙 | 丁 | |
100 | √ | × | √ | √ |
217 | × | √ | × | √ |
200 | √ | √ | √ | × |
300 | √ | × | √ | × |
85 | √ | × | × | × |
98 | × | √ | × | × |
分析 (1)從統(tǒng)計(jì)表可得,在這1000名顧客中,同時(shí)購(gòu)買乙和丙的有200人,從而求得顧客同時(shí)購(gòu)買乙和丙的概率.
(2)根據(jù)在甲、乙、丙、丁中同時(shí)購(gòu)買3種商品的有300人,求得顧客顧客在甲、乙、丙、丁中同時(shí)購(gòu)買3種商品的概率.
(3)在這1000名顧客中,求出同時(shí)購(gòu)買甲和乙的概率、同時(shí)購(gòu)買甲和丙的概率、同時(shí)購(gòu)買甲和丁的概率,從而得出結(jié)論.
解答 解:(1)從統(tǒng)計(jì)表可得,在這1000名顧客中,同時(shí)購(gòu)買乙和丙的有200人,
故顧客同時(shí)購(gòu)買乙和丙的概率為$\frac{200}{1000}$=0.2.
(2)在這1000名顧客中,在甲、乙、丙、丁中同時(shí)購(gòu)買3種商品的有100+200=300(人),
故顧客顧客在甲、乙、丙、丁中同時(shí)購(gòu)買3種商品的概率為$\frac{300}{1000}$=0.3.
(3)在這1000名顧客中,同時(shí)購(gòu)買甲和乙的概率為$\frac{200}{1000}$=0.2,
同時(shí)購(gòu)買甲和丙的概率為$\frac{100+200+300}{1000}$=0.6,
同時(shí)購(gòu)買甲和丁的概率為$\frac{100}{1000}$=0.1,
故同時(shí)購(gòu)買甲和丙的概率最大.
點(diǎn)評(píng) 本題主要考查古典概率、互斥事件的概率加法公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{21}$-$\frac{{y}^{2}}{28}$=1 | B. | $\frac{{x}^{2}}{28}$-$\frac{{y}^{2}}{21}$=1 | C. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum _{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum _{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum _{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum _{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com