2.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),t≠0),其中0≤α≤π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,C3:ρ=2$\sqrt{3}$cosθ.
(1)求C2與C3交點(diǎn)的直角坐標(biāo);
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|的最大值.

分析 (I)由曲線C2:ρ=2sinθ,化為ρ2=2ρsinθ,把$\left\{\begin{array}{l}{{ρ}^{2}={x}^{2}+{y}^{2}}\\{y=ρsinθ}\end{array}\right.$代入可得直角坐標(biāo)方程.同理由C3:ρ=2$\sqrt{3}$cosθ.可得直角坐標(biāo)方程,聯(lián)立解出可得C2與C3交點(diǎn)的直角坐標(biāo).
(2)由曲線C1的參數(shù)方程,消去參數(shù)t,化為普通方程:y=xtanα,其中0≤α≤π,α≠$\frac{π}{2}$;α=$\frac{π}{2}$時(shí),為x=0(y≠0).其極坐標(biāo)方程為:θ=α(ρ∈R,ρ≠0),利用|AB|=$|2sinα-2\sqrt{3}cosα|$即可得出.

解答 解:(I)由曲線C2:ρ=2sinθ,化為ρ2=2ρsinθ,
∴x2+y2=2y.
同理由C3:ρ=2$\sqrt{3}$cosθ.可得直角坐標(biāo)方程:${x}^{2}+{y}^{2}=2\sqrt{3}x$,
聯(lián)立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-2y=0}\\{{x}^{2}+{y}^{2}-2\sqrt{3}x=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,
∴C2與C3交點(diǎn)的直角坐標(biāo)為(0,0),$(\frac{\sqrt{3}}{2},\frac{3}{2})$.
(2)曲線C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),t≠0),化為普通方程:y=xtanα,其中0≤α≤π,α≠$\frac{π}{2}$;α=$\frac{π}{2}$時(shí),為x=0(y≠0).其極坐標(biāo)方程為:θ=α(ρ∈R,ρ≠0),
∵A,B都在C1上,
∴A(2sinα,α),B$(2\sqrt{3}cosα,α)$.
∴|AB|=$|2sinα-2\sqrt{3}cosα|$=4$|sin(α-\frac{π}{3})|$,
當(dāng)$α=\frac{5π}{6}$時(shí),|AB|取得最大值4.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、曲線的交點(diǎn)、兩點(diǎn)之間的距離公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.動(dòng)點(diǎn)E和F分別在線段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}\overrightarrow{DC}$,則$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值為$\frac{29}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若n是一個(gè)三位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”(如137,359,567等).在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次,得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個(gè)數(shù)字之積不能被5整除,參加者得0分,若能被5整除,但不能被10整除,得-1分,若能被10整除,得1分.
(Ⅰ)寫出所有個(gè)位數(shù)字是5的“三位遞增數(shù)”;
(Ⅱ)若甲參加活動(dòng),求甲得分X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合X={1,2,3},Yn={1,2,3,…,n)(n∈N*),設(shè)Sn={(a,b)|a整除b或b整除a,a∈X,B∈Yn},令f(n)表示集合Sn所含元素的個(gè)數(shù).
(1)寫出f(6)的值;
(2)當(dāng)n≥6時(shí),寫出f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某超市隨機(jī)選取1000位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購買,“×”表示未購買.
100×
217××
200×
300××
85×××
 98×××
(1)估計(jì)顧客同時(shí)購買乙和丙的概率;
(2)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購買3種商品的概率;
(3)如果顧客購買了甲,則該顧客同時(shí)購買乙、丙、丁中哪種商品的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓柱被一個(gè)平面截去一部分后與半球(半徑為r)組成一個(gè)幾何體,該幾何體三視圖中的正視圖和俯視圖如圖所示.若該幾何體的表面積為16+20π,則r=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,原點(diǎn)O到經(jīng)過兩點(diǎn)(c,0),(0,b)的直線的距離為$\frac{1}{2}$c.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)如圖,AB是圓M:(x+2)2+(y-1)2=$\frac{5}{2}$的一條直徑,若橢圓E經(jīng)過A、B兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知{an}是等差數(shù)列,公差d不為零,前n項(xiàng)和是Sn,若a3,a4,a8成等比數(shù)列,則( 。
A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax3+x2(a∈R)在x=$-\frac{4}{3}$處取得極值.
(Ⅰ)確定a的值;
(Ⅱ)若g(x)=f(x)ex,討論g(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案