5.如圖,在△ABC中,AB=AC,△ABC的外接圓⊙O的弦AE交BC于點(diǎn)D.
求證:△ABD∽△AEB.

分析 直接利用已知條件,推出兩個三角形的三個角對應(yīng)相等,即可證明三角形相似.

解答 證明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,
可知:△ABD∽△AEB.

點(diǎn)評 本題考查圓的基本性質(zhì)與相似三角形等基礎(chǔ)知識,考查邏輯推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線過點(diǎn)$(4,\sqrt{3})$且漸近線方程為y=±$\frac{1}{2}$x,則該雙曲線的標(biāo)準(zhǔn)方程是$\frac{1}{4}$x2-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.中位數(shù)為1010的一組數(shù)構(gòu)成等差數(shù)列,其末項(xiàng)為2015,則該數(shù)列的首項(xiàng)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若n是一個三位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”(如137,359,567等).在某次數(shù)學(xué)趣味活動中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取1個數(shù),且只能抽取一次,得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個數(shù)字之積不能被5整除,參加者得0分,若能被5整除,但不能被10整除,得-1分,若能被10整除,得1分.
(Ⅰ)寫出所有個位數(shù)字是5的“三位遞增數(shù)”;
(Ⅱ)若甲參加活動,求甲得分X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(Ⅰ)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0在區(qū)間(1,+∞)內(nèi)恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合X={1,2,3},Yn={1,2,3,…,n)(n∈N*),設(shè)Sn={(a,b)|a整除b或b整除a,a∈X,B∈Yn},令f(n)表示集合Sn所含元素的個數(shù).
(1)寫出f(6)的值;
(2)當(dāng)n≥6時,寫出f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某超市隨機(jī)選取1000位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購買,“×”表示未購買.
100×
217××
200×
300××
85×××
 98×××
(1)估計(jì)顧客同時購買乙和丙的概率;
(2)估計(jì)顧客在甲、乙、丙、丁中同時購買3種商品的概率;
(3)如果顧客購買了甲,則該顧客同時購買乙、丙、丁中哪種商品的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,原點(diǎn)O到經(jīng)過兩點(diǎn)(c,0),(0,b)的直線的距離為$\frac{1}{2}$c.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)如圖,AB是圓M:(x+2)2+(y-1)2=$\frac{5}{2}$的一條直徑,若橢圓E經(jīng)過A、B兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={1,2,3},B={1,3},則A∩B=( 。
A.{2}B.{1,2}C.{1,3}D.{1,2,3}

查看答案和解析>>

同步練習(xí)冊答案