10.“x≥0”是“l(fā)og${\;}_{\frac{1}{2}}$(x+2)<2”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 解出不等式log${\;}_{\frac{1}{2}}$(x+2)<2的范圍,再根據(jù)必要條件和充分條件的定義進行求解;

解答 解:log${\;}_{\frac{1}{2}}$(x+2)<2=$lo{g}_{\frac{1}{2}}\frac{1}{4}$,
∴x+2>$\frac{1}{4}$,即x>-$\frac{7}{4}$,
∵“x≥0”⇒x>-$\frac{7}{4}$,反之則不能
∴“x≥0”是“l(fā)og${\;}_{\frac{1}{2}}$(x+2)<2”的充分不必要條件,
故選:B.

點評 此題主要考查必要條件和充分條件的定義,及必要條件,充分條件的判斷,此類題是高考的熱點問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知P(xp,5)是雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$(a>0,b>0)上的一點,F(xiàn)1,F(xiàn)2分別是雙曲線的左,右焦點,若|PF1|•|PF2|=$\frac{9}{4}$ac,△PF1F2的內(nèi)切圓的面積為4π,則雙曲線Γ的漸近線方程為( 。
A.y=$±\sqrt{2}$xB.y=±$\frac{\sqrt{7}}{3}$xC.y=±$\frac{4}{3}$xD.y=±$\sqrt{6}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.經(jīng)過兩圓x2+y2=9和(x+4)2+(y+3)2=8的交點的直線方程為(  )
A.8x+6y+13=0B.6x-8y+13=0C.4x+3y+13=0D.3x+4y+26=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某高校在2015年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,成績都為整數(shù)且全部分布在[160,185].按成績分5組[160,165),[165,170),[170,175),[175,180),[180,185],畫出如下部分頻率分布直方圖.觀察圖形,根據(jù)給出的信息,回答下列問題:

(1)求第二小組的頻率,并補全這個頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣選取6名學(xué)生進入第二輪面試,求:
①第3、4、5組每組各選取多少名學(xué)生進入第二輪面試?
②高校決定從參加二輪面試的6名學(xué)生中隨機選派2名到北京大學(xué)學(xué)習(xí)交流,求這兩人在同一分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知一組數(shù)據(jù)為1、5、6、2、6,則這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)的大小關(guān)系為( 。
A.中位數(shù)>平均數(shù)>眾數(shù)B.眾數(shù)>中位數(shù)>平均數(shù)
C.眾數(shù)>平均數(shù)>中位數(shù)D.平均數(shù)>眾數(shù)>中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$f(x)=\sqrt{4-x}+lg\frac{{{x^2}-5x+6}}{x-3}$的定義域為( 。
A.(2,3)B.(2,4)C.(2,3)∪(3,4]D.(-1,3)∪(3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列語句中確定是一個集合的有①
①在某一時刻,廣東省新生嬰兒的全體;   ②非常小的數(shù)的全體;
③身體好的同學(xué)的全體;                 ④十分可愛的熊貓的全體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.集合A={0,1,2},B={x|-1<x<2},則A∩B={0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{\sqrt{2}}{2}$,且橢圓上點到橢圓C1左焦點距離的最小值為$\sqrt{2}$-1.
(1)求C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案