14.在四棱錐 P-ABCD中,ABCD是正方形,若該四棱錐各棱長均相等,G是棱PA的中點,則直線BG與直線PC所成角的余弦值是0.

分析 連結(jié)AC、BD,交于點O,以O(shè)為原點,OA為x軸,OB為y軸,OP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線BG與直線PC所成角的余弦值.

解答 解:連結(jié)AC、BD,交于點O,以O(shè)為原點,OA為x軸,OB為y軸,OP為z軸,建立空間直角坐標(biāo)系,
設(shè)四棱錐 P-ABCD棱為2,
則A($\sqrt{2}$,0,0),P(0,0,$\sqrt{2}$),G($\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}$),B(0,$\sqrt{2}$,0),
$\overrightarrow{BG}$=($\frac{\sqrt{2}}{2},-\sqrt{2},\frac{\sqrt{2}}{2}$),
$\overrightarrow{PA}$=($\sqrt{2},0,-\sqrt{2}$),
設(shè)直線BG與直線PC所成角為θ,
則cosθ=$\frac{|\overrightarrow{BG}•\overrightarrow{PA}|}{|\overrightarrow{BG}|•|\overrightarrow{PA}|}$=0,
∴直線BG與直線PC所成角的余弦值0.
故答案為:0.

點評 本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線C:y2=2px(p>0)與橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)有相同焦點F,兩條曲線在第一象限內(nèi)的交點為A,若直線OA的斜率為2,則橢圓的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{6}-\sqrt{2}}{2}$C.$\sqrt{2}$-1D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,直線y=x+2過橢圓C的左焦點F1
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過點A(0,-1)的直線l與橢圓交于不同兩點M、N,當(dāng)△MON的面積為$\frac{\sqrt{22}}{3}$時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角θ的終邊經(jīng)過點P(x,3)(x<0),且cosθ=$\frac{x}{4}$,則x的值為( 。
A.$\sqrt{7}$B.5C.-5D.-$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=[cos($\frac{π}{2}$-x)-$\sqrt{3}$cosx]cosx.
(1)求f(x)的最小正周期和最大值;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,∠AOB=60°,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=2(λ≥0,μ≥0),則$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范圍是(0,$\frac{2\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|x2-x<2},B={x||x+1|<1},則A∩(∁RB)=( 。
A.(-1,0)B.(-1,0]C.(0,2)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知z=|$\frac{3+4i}{4-3i}$|+2i,則|z|$\overline{z}$+z|$\overline{z}$|=$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計算(lg3+2lg2-lg10)÷lg1.2的結(jié)果為1.

查看答案和解析>>

同步練習(xí)冊答案