6.已知函數(shù)f(x)=$\frac{2x-5}{x-3}$的值域為[-4,2)∪(2,3],它的定義域為A,B={x|(x-a-2)(x-a-3)<0},若A∩B=∅,求a的取值范圍.

分析 根據(jù)函數(shù)的定義域和值域進(jìn)行求解即可.

解答 解:f(x)=$\frac{2x-5}{x-3}$=2+$\frac{1}{x-3}$,
∵函數(shù)的值域是[-4,2)∪(2,3],
∴由f(x)=-4得x=$\frac{17}{6}$,由f(x)=3得x=4,
∵函數(shù)f(x)在(3,+∞)和(-∞,3)上分別遞增,
∴由函數(shù)的值域得函數(shù)的定義域為A=(-∞,$\frac{17}{6}$]∪[4,+∞),
B={x|(x-a-2)(x-a-3)<0}={x|a+2<x<a+3},
若A∩B=∅,
則$\left\{\begin{array}{l}{a+2≥\frac{17}{6}}\\{a+3≤4}\end{array}\right.$,即$\left\{\begin{array}{l}{a≥\frac{5}{6}}\\{a≤1}\end{array}\right.$,即$\frac{5}{6}$≤a≤1,

點評 本題主要考查函數(shù)值域和定義域的關(guān)系以及集合的基本運(yùn)算,根據(jù)分式函數(shù)的性質(zhì)求出函數(shù)的定義域是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知下列四個結(jié)論:
①函數(shù)y=|sin(x+$\frac{π}{6}$)|是偶函數(shù);
②函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象的一條對稱軸為x=$\frac{5}{12}$π;
③函數(shù)y=tan2x的圖象的一個對稱中心為($\frac{π}{4}$,0);
④若A+B=$\frac{π}{4}$,則(1+tanA)(1+tanB)=2.
其中正確的結(jié)論序號為②③④(把所有正確結(jié)論的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.有一個容量為60的樣本(60名學(xué)生的數(shù)學(xué)考試成績),分組情況如表:
分組0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5
頻數(shù)3612
頻率0.3
(1)填出表中所剩的空格;
(2)畫出頻率分布直方圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在下列結(jié)論中,錯用均值不等式作依據(jù)的是( 。
A.x,y,z∈R+,則$\frac{x}{y}$+$\frac{y}{z}$+$\frac{z}{x}$≥3B.$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$≥2
C.若a,b∈R,則$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2D.a∈R+,(1+a)(1+$\frac{1}{a}$)≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,則f(4)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,三內(nèi)角A、B、C的對邊分別是a、b、c.若4a2=b2+c2+2bc,sin2A=sinB•sinC,則△ABC的形狀的形狀為( 。
A.等邊三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)數(shù)列{an}為等差數(shù)列,其前n項和為Sn,已知a1+a5+a9=27,則a5=9,S9=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)等差數(shù)列{an}的前n項和為Sn,a2=4,S5=30
(1)求數(shù)列{an}的通項公式an
(2)設(shè)數(shù)列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n項和為Tn,求證:$\frac{1}{8}$≤Tn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)y=$\frac{1}{a{x}^{2}+3x+a}$的定義域為R,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案