16.如圖,在四棱錐S-ABCD中,底面ABCD為正方形,SA⊥平面ABCD,AC與BD相交于點(diǎn)O,點(diǎn)P是側(cè)棱SC上一動(dòng)點(diǎn),則一定與平面PBD垂直的平面是( 。
A.平面SABB.平面SACC.平面SCDD.平面ABCD

分析 利用平面與平面垂直的判定定理,證明BD⊥平面SAC,即可得出結(jié)論.

解答 解:∵四棱錐S-ABCD中,底面ABCD為正方形,
∴BD⊥AC,
∵SA⊥平面ABCD,
∴SA⊥BD,
∵SA∩AC=A,
∴BD⊥平面SAC,
∵BD?平面PBD,
∴平面PBD⊥平面SAC.
故選:B.

點(diǎn)評(píng) 本題考查平面與平面垂直的判定定理,考查直線與平面垂直的判定定理,證明BD⊥平面SAC是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直角坐標(biāo)平面內(nèi)的兩個(gè)不同的點(diǎn)M、N滿足條件:
①M(fèi)、N都在函數(shù)y=f(x)的圖象上;
②M、N關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)[M,N]為函數(shù)y=f(x)的一對(duì)“機(jī)遇點(diǎn)對(duì)”(注:點(diǎn)對(duì)[M,N]與[N,M]為同一“機(jī)遇點(diǎn)對(duì)”).
已知函數(shù)f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{sinx,x<0}\end{array}\right.$,則此函數(shù)的“機(jī)遇點(diǎn)對(duì)”有( 。
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,且|PF1|=3|PF2|,則此雙曲線的離心率的取值范圍為(  )
A.$(1,\sqrt{2})$B.(1,2]C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow a=(-1,2)$,$\overrightarrow b=(2,3)$,$\overrightarrow m=λ\overrightarrow a+\overrightarrow b$,$\overrightarrow n=\overrightarrow a-\overrightarrow b$,若$\overrightarrow m$與$\overrightarrow n$垂直,則實(shí)數(shù)λ的值是9,若$\overrightarrow m$與$\overrightarrow n$的夾角為鈍角,則實(shí)數(shù)λ的取值范圍是λ<9且λ≠-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是左,右焦點(diǎn),P是右支上一點(diǎn),PF2⊥F1F2,OH⊥PF1,垂足為H,若OF1=$\frac{4}{3}$OH,則離心率e=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.中心在原點(diǎn),焦點(diǎn)在y軸上,虛軸長(zhǎng)為$4\sqrt{2}$并且離心率為3的雙曲線的漸近線方程為y=±$\frac{\sqrt{2}}{4}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的離心率為$\sqrt{5}$,虛軸長(zhǎng)為4.
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)(0,1),傾斜角為45°的直線l與雙曲線C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)經(jīng)過等腰梯形ABCD的上底的兩個(gè)頂點(diǎn)C、D,下底的兩個(gè)頂點(diǎn)A、B分別為雙曲線的左、右焦點(diǎn),對(duì)角線AC與雙曲線的左支交于點(diǎn)E,且3|AE|=2|EC|,|AB|=2|CD|,則該雙曲線的離心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線均與圓(x-2)2+y2=1相切,則雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案