18.已知回歸直線方程為$\widehat{y}$=0.5x-0.18,則當(dāng)x=20時(shí),y的估計(jì)值是9.82.

分析 把x=20代入回歸直線方程求出$\widehat{y}$的值即可.

解答 解:把x=20代入回歸直線方程$\widehat{y}$=0.5x-0.18中,
計(jì)算$\widehat{y}$=0.5×20-0.18=9.82,
即x=20時(shí)y的估計(jì)值是9.82.
故答案為:9.82.

點(diǎn)評 本題考查了線性回歸方程的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式(m-2)(m+3)<0的一個(gè)充分不必要條件是( 。
A.-3<m<0B.-3<m<2C.-3<m<4D.-1<m<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知(x+2)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)試求a0和Sn=$\sum_{i=1}^{n}$ai
(2)試比較Sn與(n-2)3n+2n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.宿州市某登山愛好者為了解山高y(百米)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了4次山高與相應(yīng)的氣溫,并制作了對照表,由表中數(shù)據(jù),得到線性回歸方程為y=-2x+a,由此估計(jì)山高為72(百米)處的氣溫為( 。
氣溫x(℃)181310-1
山高y(百米)24343864
A.-10B.-8C.-6D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個(gè)條件中,使a>b成立的必要而不充分的條件是( 。
A.a>b-1B.a>b+1C.|a|>|b|D.2a>2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}t+\sqrt{3}\\ y=-3t+2\end{array}\right.$(t為參數(shù)t∈R)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ,θ∈[0,2π).
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程.
(2)求曲線C上的點(diǎn)到直線l的距離的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=loga($\frac{1-x}{b+x}$)(0<a<1,b>0)為奇函數(shù),當(dāng)x∈(-1,a]時(shí),函數(shù)y=f(x)的值域是(-∞,1].
(1)確定b的值;
(2)證明函數(shù)y=f(x)在定義域上單調(diào)遞增,并求a的值;
(3)若對于任意的t∈R,不等式f(t2-2t)+f(2t2-k)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x0∈R,x02-2x0+3≤0的否定是?x∈R,x2-2x+3>0,命題q:雙曲線$\frac{{x}^{2}}{4}$-y2=1的離心率為2,則下列命題中為真命題的是( 。
A.p∨qB.¬p∧qC.¬p∨qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x3+ax2-x+c(x∈R),下列結(jié)論錯(cuò)誤的是( 。
A.函數(shù)f(x)一定存在極大值和極小值
B.函數(shù)f(x)在點(diǎn)(x0,f(x0))(x0∈R)處的切線與f(x)的圖象必有兩個(gè)不同的公共點(diǎn)
C.函數(shù)f(x)的圖象是中心對稱圖形
D.若函數(shù)f(x)在(-8,x1),(x2,+8)上是增函數(shù),則x2-x1=$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊答案