19.在銳角△ABC中,角A,B,C的對邊分別是a,b,c,若a=$\sqrt{7}$,b=3,$\sqrt{7}$sinB+sinA=2$\sqrt{3}$,則cosB的值為$\frac{\sqrt{7}}{14}$.

分析 求出三角形的外接圓的直徑,利用正弦定理求出B是正弦函數(shù)值,然后求解即可.

解答 解:在銳角△ABC中,角A,B,C的對邊分別是a,b,c,若a=$\sqrt{7}$,b=3,設(shè)外接圓的半徑為R,則2R=$\frac{sinB}$,2R=$\frac{a}{sinA}$,代入$\sqrt{7}$sinB+sinA=2$\sqrt{3}$,可得:3$\sqrt{7}$+$\sqrt{7}$=4$\sqrt{3}$R,R=$\frac{\sqrt{7}}{\sqrt{3}}$.
sinB=$\frac{1}{2}×$$\frac{3}{\frac{\sqrt{7}}{\sqrt{3}}}$=$\frac{3\sqrt{21}}{14}$.
cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{\sqrt{7}}{14}$
故答案為:$\frac{\sqrt{7}}{14}$.

點(diǎn)評 本題考查正弦定理的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求函數(shù)y=2sin(x+$\frac{π}{3}$)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在如圖所示的正方形中隨機(jī)投擲10000個點(diǎn),則落入陰影部分(曲線C為正態(tài)分布N(-2,1)的密度曲線)的點(diǎn)的個數(shù)的估計值為( 。
[附:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,
P(μ-2σ<X<μ+2σ)=0.9544,
P(μ-3σ<X<μ+3σ)=0.9974].
A.430B.215C.2718D.1359

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(1+x)2n,g(x)=(1-x)2n.求證:
(1)C2n1+2C2n2+3C2n3+…+2nC2n2n=n22n
(2)(Cn02+(Cn12+(Cn22+…+(Cnn2=C2nn
(3)f(x)+g(x)<4n,其中|x|<1,n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)I={(x,y)|x∈R且y∈R},P,Q均為I的子集,定義Q○P={(x,z)|存在y使(x,y)∈P且(y,z)∈Q},已知X,Y,Z為I的子集,下列正確的是( 。
A.(X∪Y)○Z=(X○Z)∩(Y○Z)B.(X∩Y)○Z=(X○Z)∪(Y○Z)C.(X∪Y)○Z=(X○Z)∪(Y○Z)D.(X∩Y)○Z=(X○Z)∩(Y○Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在(2+$\sqrt{x}$-$\frac{1}{{x}^{2016}}$)10的展開式中,x4項的系數(shù)為180(結(jié)果用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在△ABC中,點(diǎn)D在BC邊上,∠CAD=$\frac{π}{4}$,cos∠C=$\frac{3}{5}$.
(Ⅰ)求sin∠ADB的值; 
(Ⅱ)若BD=2DC=5,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=$\sqrt{3}$sinx•cosx+cos2x
(Ⅰ) 試求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)△ABC的三個角A,B,C的對邊分別為a,b,c,且f(C)=$\frac{3}{2}$,求$\frac{\sqrt{3}({c}^{2}+ab+3^{2})}{4{S}_{△ABC}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足sinA+sinB=(cosA+cosB)sinC.
(Ⅰ)求證:△ABC為直角三角形;
(Ⅱ)若a+b+c=1+$\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案