19.若角α∈(-π,-$\frac{π}{2}$),則$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=(  )
A.-2tanαB.2tanαC.-tanαD.tanα

分析 再利用同角三角函數(shù)的基本關(guān)系,化簡所給的式子可得結(jié)果.

解答 解:∵角α∈(-π,$\frac{π}{2}$),故cosα 和tanα的符號相反,
則$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=$\sqrt{\frac{{(1+sinα)}^{2}}{{cos}^{2}α}}$-$\sqrt{\frac{{(1-sinα)}^{2}}{{cos}^{2}α}}$=|$\frac{1+sinα}{cosα}$|-|$\frac{1-sinα}{cosα}$|
=$\frac{1+sinα}{|cosα|}$-$\frac{1-sinα}{|cosα|}$=$\frac{2sinα}{|cosα|}$=-2tanα,
故選:A.

點評 本題主要考查利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知四點A(-1,-5),B(0,-3),C(3,3),D(5,7),試用向量方法判斷A、B、C、D四點是否共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.將30.4,0.43,log43按從小到大的順序排列,正確的是( 。
A.0.43<30.4<log43B.log43<0.43<30.4C.0.43<log43<30.4D.log43<30.4<0.43

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,圓O與x軸的正半軸的交點為A,點C、B在圓O上,且點C位于第一象限,點B的坐標為($\frac{12}{13}$,-$\frac{5}{13}$),∠AOC=α,若|BC|=1,則$\sqrt{3}$cos2$\frac{α}{2}$-sin$\frac{α}{2}$cos$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$的值為( 。
A.$\frac{5}{13}$B.$\frac{12}{13}$C.-$\frac{5}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=tan$\frac{πx}{8}$,x∈(-4,4),則滿足不等式(a-1)log${\;}_{(\sqrt{2}+1)}$[f(a-1)+$\sqrt{{f}^{2}(a-1)+1}$]≤2的實數(shù)a的取值范圍是[-1,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.數(shù)列{an}中,已知a1=$\frac{1}{4}$,an+1=$\sqrt{{a}_{n}-{{a}_{n}}^{2}}$.
(1)證明:an<an+1<$\frac{1}{2}$;
(2)證明:當n≥2時,($\frac{{a}_{n+1}}{{a}_{n}}$)${\;}^{{2}^{n}}$<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.時代廣場有商鋪200個,當月租金為5000元時,每月只有一半的商鋪被租出,為提高出租率,開發(fā)商將每個商鋪的月租金以100元為一檔向下浮動,則每向下浮動一個檔位,就可以多山出5個商鋪,求解下列問題.
(1)寫出開發(fā)商的月租金收入y和每個商鋪的月租金下浮檔數(shù)x之間的函數(shù)y的函數(shù)關(guān)系式.
(2)當下浮多少檔時,月租金收入有最大值?最大值是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={1,2,3},B={2,3,5},則A∩B=( 。
A.{1,5}B.{1,2,5}C.{2,3}D.{1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知在△ABC中,∠A=60°,D為AC上一點,且BD=3,$\overrightarrow{AC}$•$\overrightarrow{AD}$=$\overrightarrow{AC}$•$\overrightarrow{AB}$,則$\overrightarrow{AD}$•$\overrightarrow{AB}$等于(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案