精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,已知直線l過點P(3,2),且與x軸、y軸的正半軸分別交于A、B兩點,求△AOB面積最小時l的方程.

【答案】

【解析】

假設直線與坐標軸交點,設直線的截距式,將點P代入直線方程,求出a、b關系,根據三角形面積的公式,用a表示三角形面積,整理為關于a的二次方程,令,求得三角形面積的最小值,然后求出參數值,即可得出直線方程.

A(a,0),B(0,b),顯然a>3,b>2,

則直線l的方程為=1,

因為P(3,2)在直線l上,所以=1,于是b,

所以SAOBab,整理得a2SAOB·a+3SAOB=0(*).

因為此方程有解,所以ΔS-12SAOB≥0,

又因為SAOB>0,所以SAOB≥12,SAOB最小值=12.

SAOB=12代入(*)式,得a2-12a+36=0,解得a=6,b=4.

此時直線l的方程為=1,即2x+3y-12=0.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知是拋物線 )上一點, 是拋物線的焦點, .

(1)求拋物線的方程;

(2)已知 ,過 的直線 交拋物線 、 兩點,以 為圓心的圓 與直線 相切,試判斷圓 與直線 的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

最高

氣溫

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天數

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數學期望達到最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據某電子商務平臺的調查統(tǒng)計顯示,參與調查的1000位上網購物者的年齡情況如圖顯示.

(1)已知[30,40)、[40,50)、[50,60)三個年齡段的上網購物者人數成等差數列,求a,b的值.
(2)該電子商務平臺將年齡在[30,50)之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放100元的代金券,現采用分層抽樣的方式從參與調查的1000位上網購者中抽取10人,并在這10人中隨機抽取3人進行回訪,求此三人獲得代金券總和X的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,長方體ABCDABC′D′中,AB=2 AD=2 ,AA′=2,

(Ⅰ)求異面直線BC′ 和AD所成的角;

(Ⅱ)求證:直線BC′∥平面ADDA′.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD是菱 形,PA=PB,且側面PAB⊥平面ABCD,點E是AB的中點.

(1)求證:PE⊥AD;

(2)若CA=CB,求證:平面PEC⊥平面PAB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖所示,在空間直角坐標系的坐標平面內,若函數的圖象與軸圍成一個封閉區(qū)域,將區(qū)域沿軸的正方向上移4個單位,得到幾何體如圖一.現有一個與之等高的圓柱如圖二,其底面積與區(qū)域面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓過點,且與圓關于直線對稱.

(1)求兩圓的方程;

(2)若直線與直線平行,且截距為7,在上取一橫坐標為的點,過點作圓的切線,切點為,設中點為.

(。┤,求的值;

(ⅱ)是否存在點,使得?若存在,求點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我校對高二600名學生進行了一次知識測試,并從中抽取了部分學生的成績(滿分100)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.

(1)填寫頻率分布表中的空格,補全頻率分布直方圖,并標出每個小矩形對應的縱軸數據;

分組

頻數

頻率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

[80,90)

[90,100]

14

0.28

合計

1.00

如果用分層抽樣的方法從樣本分數在[60,70)[80,90)的人中共抽取6,再從6人中選2,2人分數都在[80,90)的概率.

查看答案和解析>>

同步練習冊答案