分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)求得m,再由三角函數(shù)的圖象平移得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y=0}\\{3x-y-2=0}\end{array}\right.$,得A(1,1),
化目標(biāo)函數(shù)z=x+$\frac{m}{2}$y(m>0)為$y=-\frac{2x}{m}+\frac{2z}{m}$,
由圖可知,當(dāng)直線$y=-\frac{2x}{m}+\frac{2z}{m}$過A時,直線在y軸上的截距最大,z有最大值為1+$\frac{m}{2}=2$,即m=2.
∴y=sin(mx+$\frac{π}{3}$)=sin(2x+$\frac{π}{3}$),
y=sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$后,得y=sin(2x+$\frac{π}{3}$)=sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=sin2x.
故答案為:y=sin2x.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,訓(xùn)練了函數(shù)圖象的平移,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {a|1≤a≤19} | B. | {a|<a<19} | C. | {a|1≤a<19} | D. | {a|1<a≤19} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com