13.如圖,在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,∠BAC=90°,AB=AC=AA1=2,且E是BC的中點,D是AC1中點.
(1)求證:B1C⊥平面AEC1;
(2)求三棱錐C-AED的體積.

分析 (1)證明AE⊥B1C,B1C⊥EC1,即可證明B1C⊥平面AEC1;
(2)利用等體積轉(zhuǎn)換,即可求三棱錐C-AED的體積.

解答 (1)證明:∵AB=AC,E是BC的中點,
∴AE⊥平面B1C.
∵B1C?平面B1C,
∴AE⊥B1C.
∵CC1⊥平面ABC,∠BAC=90°,AB=AC=AA1=2,
∴$\frac{CE}{{B}_{1}B}$=$\frac{{C}_{1}C}{BC}$=$\frac{\sqrt{2}}{2}$,
∴△C1CE∽△CBB1,
∴∠B1CB=∠CC1E,
∴B1C⊥EC1,
∵EC1∩AE=E,
∴B1C⊥平面AEC1;
(2)解:三棱錐C-AED的體積=$\frac{1}{2}$×三棱錐C1-AED的體積=$\frac{1}{2}×\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×2×2×2$=$\frac{1}{3}$.

點評 本題考查線面垂直的判定,考查三棱錐體積的計算,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示的幾何體中,四邊形ABCD和四邊形BCEF是全等的等腰梯形,且平面BCEF⊥平面ABCD,AB∥DC,CE∥BF,AD=BC,AB=2CD,∠ABC=∠CBF=60°,G為線段AB的中點
(1)求證:AC⊥BF;
(2)求二面角D-FG-B(鈍角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(x)=$\frac{{{e^{-x}}}}{a}+\frac{a}{{{e^{-x}}}}$(a>0)是定義在R上的偶函數(shù),
(1)求實數(shù)a的值;
(2)判斷并證明函數(shù)f(x)在[0,+∞)的單調(diào)性;
(3)若關(guān)于x的不等式f(x)-m2+m≥0的解集為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知定義在R上的兩函數(shù)f(x)=$\frac{{π}^{x}-{π}^{-x}}{2}$,g(x)=$\frac{{π}^{x}+{π}^{-x}}{2}$(其中π為圓周率,π=3.1415926…),有下列命題:
①f(x)是奇函數(shù),g(x)是偶函數(shù);
②f(x)是R上的增函數(shù),g(x)是R上的減函數(shù);
③f(x)無最大值、最小值,g(x)有最小值,無最大值;
④對任意x∈R,都有f(2x)=2f(x)g(x);
⑤f(x)有零點,g(x)無零點.
其中正確的命題有①③④⑤(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知三棱柱ABC-A1B1C1的側(cè)棱和底面垂直,底面是正三角形,側(cè)棱長是底邊長的2倍,若該三棱柱的各頂點都在球O的表面上,且球O的表面積為36π,則此三棱錐A-A1B1C1的體積為( 。
A.$\frac{121}{25}$B.$\frac{81}{16}$C.$\frac{16}{9}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知正數(shù)x,y滿足x+y=1,則$\frac{1}{x}$$+\frac{x}{y}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}滿足:a1a2…an=1-an,n∈N*
(1)證明:{$\frac{1}{1-{a}_{n}}$}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)記Tn=$\left\{\begin{array}{l}{1(n=1)}\\{{{a}_{1}a}_{2}…{a}_{n-1}(n≥2)}\end{array}\right.$(n∈N*),Sn=T1+T2+…+Tn,證明:$\frac{1}{2}$≤S2n-Sn$<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.當x>1時,lnx+$\frac{1}{x}$與1的大小關(guān)系為lnx+$\frac{1}{x}$>1(填“>“或“<“).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知A,B是橢圓3x2+y2=m(m>0)上不同兩點,線段AB的中點為N(1,3).則m的取值范圍為(12,+∞),AB所在的直線方程為y=-x+4.

查看答案和解析>>

同步練習冊答案