13.函數(shù)$f(x)=4cosxsin({x+\frac{π}{6}})-1$(x∈R)的最大值為2.

分析 展開(kāi)兩角和的正弦后運(yùn)用倍角公式化簡(jiǎn),得到f(x)=2sin(2x+$\frac{π}{6}$),然后根據(jù)正弦函數(shù)的值域,求解f(x)的最大值.

解答 解:$f(x)=4cosxsin(x+\frac{π}{6})-1$=4cosx(sinxcos$\frac{π}{6}$+cosxsin$\frac{π}{6}$)-1
=$\sqrt{3}$sin2x+2cos2x-1
=$\sqrt{3}$sin2x+cos2x
=2sin(2x+$\frac{π}{6}$)≤2.
函數(shù)的最大值為2.
故答案為:2.

點(diǎn)評(píng) 本題考查了三角函數(shù)中的恒等變換的應(yīng)用,關(guān)鍵是對(duì)公式的記憶,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足4(Sn+1)=$\frac{{{{({n+2})}^2}}}{n+1}{a_n}({n∈{N^*}})$
(1)求數(shù)列的通項(xiàng)公式an
(2)設(shè)bn=$\frac{n+1}{a_n}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,在一個(gè)棱長(zhǎng)為2的正方體魚(yú)缸內(nèi)放入一個(gè)倒置的無(wú)底圓錐形容器,圓錐的上底圓周與魚(yú)缸的底面正方形相切,圓錐的頂點(diǎn)在魚(yú)缸的缸底上,現(xiàn)在向魚(yú)缸內(nèi)隨機(jī)地投入一粒魚(yú)食,則“魚(yú)食能被魚(yú)缸內(nèi)在圓錐外面的魚(yú)吃到”的概率是( 。
A.1-$\frac{π}{4}$B.$\frac{π}{12}$C.$\frac{π}{4}$D.1-$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知冪函數(shù)$g(x)={x^{-\frac{1}{2}{m^2}+m+\frac{3}{2}}}$(m∈Z)的圖象關(guān)于y軸對(duì)稱,且g(2)<g(3)
(1)求m的值和函數(shù)g(x)的解析式;
(2)函數(shù)f(x)=ag(x)+a2x+3(a∈R)在區(qū)間[-2,-1]上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.圓x2+y2+ax-2ay+2a2+3a=0的圓心在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.直線a∥b,b?α,那么直線a與平面α的位置關(guān)系(  )
A.平行B.在平面內(nèi)C.平行或在平面內(nèi)D.相交或平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在三棱錐P-ABC中,PA⊥底面ABC,AB=AC=PA,∠BAC=90°,點(diǎn)E滿足$\overrightarrow{PE}$=$\frac{1}{4}$$\overrightarrow{PB}$,則直線AE和PC所成角的余弦值是$\frac{3\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知$\left\{{\overrightarrow i,\overrightarrow j,\overrightarrow k}\right\}$是空間的一個(gè)單位正交基底,且$\overrightarrow{OA}=2\overrightarrow i+\overrightarrow k,\overrightarrow{OB}=2\overrightarrow j$,則△OAB(O為坐標(biāo)原點(diǎn))的面積是( 。
A.$\frac{5}{2}$B.$\frac{{\sqrt{5}}}{2}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn-1=an-an-1(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=(n+1)an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案