4.如圖,在一個(gè)棱長(zhǎng)為2的正方體魚(yú)缸內(nèi)放入一個(gè)倒置的無(wú)底圓錐形容器,圓錐的上底圓周與魚(yú)缸的底面正方形相切,圓錐的頂點(diǎn)在魚(yú)缸的缸底上,現(xiàn)在向魚(yú)缸內(nèi)隨機(jī)地投入一粒魚(yú)食,則“魚(yú)食能被魚(yú)缸內(nèi)在圓錐外面的魚(yú)吃到”的概率是(  )
A.1-$\frac{π}{4}$B.$\frac{π}{12}$C.$\frac{π}{4}$D.1-$\frac{π}{12}$

分析 由題意,直接看頂部形狀,及正方形內(nèi)切一個(gè)圓,正方形面積為4,圓為π,即可求出“魚(yú)食能被魚(yú)缸內(nèi)在圓錐外面的魚(yú)吃到”的概率.

解答 解:由題意,正方形的面積為22=4.圓的面積為π.
所以“魚(yú)食能被魚(yú)缸內(nèi)在圓錐外面的魚(yú)吃到”的概率是1-$\frac{π}{4}$,
故選:A.

點(diǎn)評(píng) 本題考查概率的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.有一段演繹推理是這樣的:“若對(duì)數(shù)函數(shù)y=logax是增函數(shù),已知y=${log_{\frac{1}{4}}}x$是對(duì)數(shù)函數(shù),則y=${log_{\frac{1}{4}}}x$是增函數(shù)”
以上推理的錯(cuò)誤是( 。
A.大前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤B.小前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤
C.推理形式錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤D.大前提和小前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,則稱(chēng)$\overrightarrow{a}$◎$\overrightarrow$為$\overrightarrow{a}$,$\overrightarrow$的積,定義$\overrightarrow{a}$◎$\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|tanθ,若|$\overrightarrow{a}$|=5,|$\overrightarrow$|=1,$\overrightarrow{a}$•$\overrightarrow$=-3,則$\overrightarrow{a}$◎$\overrightarrow$等于( 。
A.$-\frac{20}{3}$B.$\frac{20}{3}$C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在區(qū)間(-1,1)中隨機(jī)地取出兩個(gè)數(shù)m,n,求使方程x2+2mx-n2+1=0無(wú)實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,D是BC中點(diǎn),已知∠BAD+∠C=90°.
(1)判斷△ABC的形狀;
(2)若△ADC的三邊長(zhǎng)是連續(xù)三個(gè)正整數(shù),求∠BAC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為A,兩個(gè)焦點(diǎn)為F1、F2,△AF1F2為正三角形且周長(zhǎng)為6.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知圓O:x2+y2=R2,若直線l與橢圓C只有一個(gè)公共點(diǎn)M,且直線l與圓O相切于點(diǎn)N;求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知sinθ-2cosθ=$\sqrt{5}$,則tan(θ十$\frac{π}{4}$)的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$f(x)=4cosxsin({x+\frac{π}{6}})-1$(x∈R)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.圓(x+2)2+y2=5關(guān)于y軸對(duì)稱(chēng)的圓的方程為( 。
A.x2+(y+2)2=5B.x2+(y-2)2=5C.(x-2)2+y2=5D.(x-2)2+(y-2)2=5

查看答案和解析>>

同步練習(xí)冊(cè)答案