如圖,平面直角坐標(biāo)系中,和為兩等腰直角三角形,,C(a,0)(a>0).設(shè)和的外接圓圓心分別為,.
(1)若⊙M與直線CD相切,求直線CD的方程;
(2)若直線AB截⊙N所得弦長(zhǎng)為4,求⊙N的標(biāo)準(zhǔn)方程;
(3)是否存在這樣的⊙N,使得⊙N上有且只有三個(gè)點(diǎn)到直線AB的距離為,若存在,求此時(shí)⊙N的標(biāo)準(zhǔn)方程;若不存在,說明理由.
(1)圓心.∴圓方程為,
直線CD方程為.
∵⊙M與直線CD相切,∴圓心M到直線CD的距離d=,
化簡(jiǎn)得: (舍去負(fù)值).∴直線CD的方程為.
(2)直線AB方程為:,圓心N .
∴圓心N到直線AB距離為.
∵直線AB截⊙N的所得弦長(zhǎng)為4,∴.
∴a=±(舍去負(fù)值) . ∴⊙N的標(biāo)準(zhǔn)方程為.
(3)存在.
由(2)知,圓心N到直線AB距離為(定值),且AB⊥CD始終成立,
∴當(dāng)且僅當(dāng)圓N半徑,即a=4時(shí),⊙N上有且只有三個(gè)點(diǎn)到直線AB的距離為.
此時(shí), ⊙N的標(biāo)準(zhǔn)方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若曲線y=1+ 與直線y=k(x-2)+4有兩個(gè)不同交點(diǎn),則實(shí)數(shù)k的取值范圍是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知為雙曲線的左準(zhǔn)線與x軸的交點(diǎn),點(diǎn),若滿足的點(diǎn)在雙曲線上,則該雙曲線的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
橢圓的離心率為, 過點(diǎn), 記橢圓的左頂點(diǎn)為.
(1)求橢圓的方程;
(2)設(shè)垂直于軸的直線交橢圓于兩點(diǎn), 試求面積的最大值;
(3)過點(diǎn)作兩條斜率分別為的直線交橢圓于兩點(diǎn),且, 求證: 直線恒過一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列的前項(xiàng)和為
(1)若數(shù)列是等比數(shù)列,滿足, 是,的等差中項(xiàng),求數(shù)列的通項(xiàng)公式;
(2)是否存在等差數(shù)列,使對(duì)任意都有?若存在,請(qǐng)求出所有滿足條件的等差數(shù)列;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com