2.某班生活委員為了解在春天本班同學感冒與性別是否相關,他收集了3月份本班同學的感冒數(shù)據(jù),并制出下面一個2×2列聯(lián)表:
感冒不感冒合計
男生52732
女生91928
合計134760
參考數(shù)據(jù)
P(K2≥2.072)≈0.15
P(K2≥2.706)≈0.10
P(K2≥6.635)≈0.010
由K2的觀測值公式,可求得k=2.278,根據(jù)給出表格信息和參考數(shù)據(jù),下面判斷正確的是(  )
A.在犯錯概率不超過10%的前提下認為該班“感冒與性別有關”
B.在犯錯概率不超過10%的前提下不能認為該班“感冒與性別有關”
C.有15%的把握認為該班“感冒與性別有關”
D.在犯錯概率不超過10%的前提下認為該班“感冒與性別有關”

分析 根據(jù)數(shù)據(jù)計算得隨機變量K2的觀測值,對照2×2列聯(lián)表中數(shù)據(jù),即可得出統(tǒng)計結論.

解答 解:由2×2列聯(lián)表數(shù)據(jù)計算得隨機變量K2的觀測值是k=2.278>2.706,
通過對照表中數(shù)據(jù)得,P(K2≥2.706)≈0.10
∴在犯錯誤的概率不超過1%的前提下不能認為該班“感冒與性別有關”.
故選:B.

點評 本題考查了應用2×2列聯(lián)表中的數(shù)據(jù),得出統(tǒng)計結論的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某市舉辦校園足球賽,組委會為了做好服務工作,招募了12名男志愿者和10名女志愿者,調(diào)查發(fā)現(xiàn)男女志愿者中分別有8人和4人喜歡看足球比賽,其余不喜歡
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜歡看足球比賽不喜歡看足球比賽總計
總計
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜歡看足球比賽有關?
(3)從女志愿者中抽取2人參加某場足球比賽服務工作,若其中喜歡看足球比賽的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.
附:參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.40.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.2016年2月份海城市工商局對35種商品進行抽樣檢查,鑒定結果有15種假貨,現(xiàn)從35種商品中選取3種.
(1)恰有2種假貨在內(nèi)的不同取法有多少種?
(2)至少有2種假貨在內(nèi)的不同取法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設等差數(shù)列{an}的前n項和為Sn,若$\frac{{S}_{2016}}{2016}$-S1=2015,則數(shù)列{an}的公差為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.直線y=x-3的傾斜角為45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若復數(shù)z=i(1-2i)(i為虛數(shù)單位),則$\overline{z}$=( 。
A.1-2iB.1+2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四棱錐P-ABCD的底面為正方形,側棱PA⊥底面ABCD,且PA=AD=2,E,F(xiàn),H分別是PA,PD,AB的中點.
(1)求直線AH與平面EFH所成角的大。
(2)求二面角H-EF-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某中學共有4400名學生,其中男生共有2400名,女生2000名,為了解學生的數(shù)學基礎的差異,采用分層抽樣的辦法從全體學生中選取55名同學進行試卷成績調(diào)查,得到男生試卷成績的頻率分布直方圖和女生試卷成績的頻數(shù)分布表.
女生試卷成績的頻數(shù)分布表
 成績分組[75,90)[90,105)[105,120)[120,135)[135,150)
 頻數(shù) 2 6 8 7 b
(1)計算a,b的值,以分組的中點數(shù)據(jù)為平均數(shù),分別估計該校男生和女生的數(shù)學成績;
(2)若規(guī)定成績在[120,150]內(nèi)為數(shù)學基礎優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認為男女生的數(shù)學基礎有差異.
  男生 女生 總計
 優(yōu)秀   
 不優(yōu)秀   
 總計   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.100.050.01
K02.7063.8416,635

查看答案和解析>>

同步練習冊答案