7.在區(qū)間(0,4]內(nèi)隨機取兩個數(shù)a、b,則使得“命題‘?x∈R,不等式x2+ax+b2>0恒成立’為真命題”的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

分析 由題意在區(qū)間(0,4]內(nèi)隨機的取兩個數(shù)a,b,求出(a,b)對應(yīng)的平面區(qū)域的面積,利用“命題‘?x∈R,不等式x2+ax+b2>0恒成立’為真命題”時△=a2-4b2<0,即|a|<|2b|,求出滿足條件的平面區(qū)域的面積,代入幾何概型計算公式,即可求出答案.

解答 解:在區(qū)間(0,4]內(nèi)隨機的取兩個數(shù)a,b,
點(a,b)對應(yīng)的平面區(qū)域如下圖中矩形所示:
若“命題‘?x∈R,不等式x2+ax+b2>0恒成立’為真命題”,
則a2-4b2<0,即|a|<|2b|對應(yīng)的平面區(qū)域如下圖中陰影所示:

∵S矩形=4×4=16,
S陰影=16-$\frac{1}{2}$×4×2=12,
∴“命題‘?x∈R,不等式x2+ax+b2>0恒成立’為真命題”的概率為
P=$\frac{12}{16}$=$\frac{3}{4}$.
故選:D.

點評 本題考查了幾何概型的應(yīng)用問題,幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān),是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)$f(x)=1-\frac{a}{x}+ln\frac{1}{x}({a為實常數(shù)})$.
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,3)上無極值,求a的取值范圍;
(Ⅲ)已知n∈N*且n≥3,求證:$ln\frac{n+1}{3}<\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+…+\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.過拋物線y2=4x的焦點F的直線交該拋物線于點A.若|AF|=3,則點A的坐標為(2,±2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.sin315°sin(-1260°)+cos390°sin(-1020°)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積是( 。
A.16πB.$\frac{81π}{4}$C.D.$\frac{27π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知正六邊形ABCDEF中,G、H、I、J、K、L分別為AB、BC、CD、DE、EF、FA的中點,圓O為六邊形GHIJKL的內(nèi)切圓,則在正六邊形ABCDEF中投擲一點,該點不落在圓O內(nèi)的概率為( 。
A.1-$\frac{\sqrt{3}π}{6}$B.1-$\frac{\sqrt{3}π}{8}$C.1-$\frac{\sqrt{3}π}{9}$D.1-$\frac{\sqrt{3}π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a≥0)
(1)當a=0時,求f(x)的單調(diào)區(qū)間;
(2)求y=f(x)在區(qū)間(0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=2x-1+a,g(x)=bf(1-x),其中a,b∈R.若滿足不等式f(x)≥g(x)的解的最小值為2,則實數(shù)a的取值范圍是( 。
A.a<0B.a>-$\frac{1}{4}$C.a≤-2D.a>-$\frac{1}{4}$或a≤-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.
(I)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過F2的直線m與曲線C交于P、Q兩點,若|PQ|2=|F1P|2+|F1Q|2,求直線m的方程.

查看答案和解析>>

同步練習冊答案