6.已知x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=2x-y的最小值是-1.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,求目標函數(shù)z=2x-y的最小值.

解答 解:由z=2x-y,得y=2x-z,作出不等式對應(yīng)的可行域(陰影部分),
平移直線y=2x-z,由平移可知當(dāng)直線y=2x-z,
經(jīng)過點B時,直線y=2x-z的截距最大,此時z取得最小值,
由$\left\{\begin{array}{l}{y=x}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,即B(-1,-1).
將B(-1,-1)的坐標代入z=2x-y,得z=-2-(-1)=-1,
即目標函數(shù)z=2x-y的最小值為-1.
故答案為:-1

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知等比數(shù)列{an}中,a2a10=9,則a5+a7有最小值6,最大值-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖是某市2014年11月份30天的空氣污染指數(shù)的頻率分布直方圖.根據(jù)國家標準,污染指數(shù)在區(qū)間[0,51)內(nèi),空氣質(zhì)量為優(yōu);在區(qū)間[51,101)內(nèi),空氣質(zhì)量為良;在區(qū)間[101,151)內(nèi),空氣質(zhì)量為輕微污染;…,由此可知該市11月份空氣質(zhì)量為優(yōu)或良的天數(shù)有28天.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)a,b,n∈N*,且a≠b,對于二項式$(\sqrt{a}-\sqrt)^{n}$
(1)當(dāng)n=3,4時,分別將該二項式表示為$\sqrt{p}$-$\sqrt{q}$(p,q∈N*)的形式;
(2)求證:存在p,q∈N*,使得等式$(\sqrt{a}-\sqrt)^{n}$=$\sqrt{p}$-$\sqrt{q}$與(a-b)n=p-q同時成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(-x),當(dāng)0≤x≤1時,f(x)=2x,則f(2015)等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,在矩形ABCD中,E,F(xiàn)分別是AB,CD的中點,沿EF將矩形BEFC折起,使∠CFD=90°,如圖2所示;
(Ⅰ)若G,H分別是AE,CF的中點,求證:GH∥平面ABCD;
(Ⅱ)若AE=1,∠DCE=60°,求三棱錐C-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)奇函數(shù)f(x)的定義域為R,且周期為5,若f(1)=-1,f(4)=log2a,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=log2($\frac{2}{1+{x}^{2}}$)的定義域為R,值域為(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.拋物線y=4x2的準線方程為( 。
A.y=-1B.$x=-\frac{1}{16}$C.x=-1D.$y=-\frac{1}{16}$

查看答案和解析>>

同步練習(xí)冊答案