1.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(-x),當(dāng)0≤x≤1時,f(x)=2x,則f(2015)等于( 。
A.-2B.-1C.1D.2

分析 利用函數(shù)的奇偶性求出函數(shù)的周期,然后求解函數(shù)在即可.

解答 解:定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(-x),
可得f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),
所以函數(shù)的周期是4,
當(dāng)0≤x≤1時,f(x)=2x,則f(2015)=f(2016-1)=f(-1)=-f(1)=-2.
故選:A.

點評 本題考查函數(shù)的奇偶性以及函數(shù)的周期性,函數(shù)值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow a=(ksin\frac{x}{3},co{s^2}\frac{x}{3})$,$\overrightarrow b=(cos\frac{x}{3},-k)$,實數(shù)k為大于零的常數(shù),函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$,x∈R,且函數(shù)f(x)的最大值為$\frac{{\sqrt{2}-1}}{2}$.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,若$\frac{π}{2}$<A<π,f(A)=0,且a=2$\sqrt{10}$,求$\overrightarrow{AB}•\overrightarrow{AC}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知實數(shù)a和b(b≠0),若不等式|a+2b|+|a-2b|≤M•|b|有解,記實數(shù)M的最小值為m.
(1)求m的值;
(2)解不等式|x-1|+|x-3|≤m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)正項數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}$${a}_{n}^{2}$+$\frac{1}{2}$an,n∈N*.正項等比數(shù)列{bn}滿足:b2=a2,b4=a6
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=$\left\{\begin{array}{l}{{a}_{n},n=2k-1}\\{_{n},n=2k(k∈{N}^{*})}\end{array}\right.$,數(shù)列{cn}的前n項和為Tn,求所有正整數(shù)m的值,使得$\frac{{T}_{2n}}{{T}_{2n-1}}$恰好為數(shù)列{cn}中的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{4}$-y2=1的離心率為( 。
A.$\frac{5}{4}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=2x-y的最小值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ex(sinx+cosx)+a(a為常數(shù)).
(Ⅰ)已知a=-3,求曲線y=f(x)在(0,f(0))處的切線方程;
(Ⅱ)當(dāng)0≤x≤π時,求f(x)的值域;
(Ⅲ)設(shè)g(x)=(a2-a+10)ex,若存在x1,x2∈[0,π],使得|f(x1)-g(x2)|<13-e${\;}^{\frac{π}{2}}$成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.空間兩條不重合的直線a,b在同一平面α上的射影分別為兩條不重合的直線m,n,則“a∥b”是“m∥n”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$)-cos(x+$\frac{π}{3}$),g(x)=2sin2$\frac{x}{2}$.
(Ⅰ)求函數(shù)y=f(x)+g(x)在[0,π]上的單調(diào)區(qū)間;
(Ⅱ)在△ABC中,A為銳角,且角A、B、C所對的邊分別為a、b、c,若a=$\sqrt{5}$,f(A)=$\frac{3\sqrt{5}}{4}$,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案