A. | 729 | B. | 491 | C. | 490 | D. | 243 |
分析 令bi=$\frac{{a}_{i+1}}{{a}_{i}}$,則對每個符合條件的數(shù)列{an},滿足$\sum_{i=1}^{8}_{i}$=$\sum_{i=1}^{8}$=$\frac{{a}_{i+1}}{{a}_{i}}$=$\frac{{a}_{9}}{{a}_{1}}$=1,且bi∈{2,1,-$\frac{1}{2}$},1≤i≤8.反之,由符合上述條件的八項數(shù)列{bn}可唯一確定一個符合題設(shè)條件的九項數(shù)列{an}.由此能求出結(jié)果.
解答 解:令bi=$\frac{{a}_{i+1}}{{a}_{i}}$(1≤i≤8),則對每個符合條件的數(shù)列{an},
滿足$\sum_{i=1}^{8}_{i}$=$\sum_{i=1}^{8}$$\frac{{a}_{i+1}}{{a}_{i}}$=$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{3}}{{a}_{2}}$+$\frac{{a}_{4}}{{a}_{3}}$+$\frac{{a}_{5}}{{a}_{4}}$+$\frac{{a}_{6}}{{a}_{5}}$+$\frac{{a}_{8}}{{a}_{7}}$+$\frac{{a}_{8}}{{a}_{9}}$=1,且bi∈{2,1,-$\frac{1}{2}$},1≤i≤8.
反之,由符合上述條件的八項數(shù)列{bn}可唯一確定一個符合題設(shè)條件的九項數(shù)列{an}.
記符合條件的數(shù)列{bn}的個數(shù)為N,
由題意知bi(1≤i≤8)中有2k個-$\frac{1}{2}$,2k個2,8-4k個1,
且k的所有可能取值為0,1,2.
共有1+C82C62+C84C44=491個,
故選:B.
點評 本題考查數(shù)列的相鄰兩項比值之和的求法,考查滿足條件的數(shù)列的個數(shù)的求法,解題時要認真審題,注意等價轉(zhuǎn)化思想的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | P+R=2Q | B. | Q(Q-P)=P(R-P) | C. | Q(Q-P)=R | D. | Q2=PR |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com