分析 (1)利用抽象函數(shù)的關(guān)系式,通過(guò)賦值法求解即可.
(2)利用賦值法,通過(guò)函數(shù)的奇偶性證明即可.
解答 解:(1)定義在R上的單調(diào)函數(shù)f(x)滿(mǎn)足f(x+y)=f(x)+f(y),
當(dāng)x=y=0時(shí),f(0)=f(0)+f(0),
解得f(0)=0.
(2)定義在R上的單調(diào)函數(shù)f(x)滿(mǎn)足f(x+y)=f(x)+f(y),
令y=-x,可得:f(x-x)=f(x)+f(-x),
可得0=f(x)+f(-x),
所以f(-x)=-f(x).
函數(shù)是奇函數(shù).
點(diǎn)評(píng) 本題考查抽象函數(shù)的應(yīng)用,賦值法的應(yīng)用,函數(shù)的奇偶性的證明,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{\sqrt{1+{a}^{2}}}$ | B. | $\frac{1}{\sqrt{1+{a}^{2}}}$ | C. | $\frac{a}{\sqrt{1+{a}^{2}}}$ | D. | -$\frac{a}{\sqrt{1+{a}^{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{10}}{10}$ | B. | -$\frac{\sqrt{10}}{10}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | -$\frac{\sqrt{10}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{1}{2}$,$\frac{5}{4}$] | B. | [$\frac{1}{2}$,$\frac{3}{4}$] | C. | (0,$\frac{1}{2}$] | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 729 | B. | 491 | C. | 490 | D. | 243 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{8\sqrt{2}}}{3}π$ | B. | $4\sqrt{3}π$ | C. | $\frac{{4\sqrt{2}π}}{3}$ | D. | 8π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com