6.若(1-3x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$的值為(  )
A.-1B.-2C.2D.0

分析 利用賦值法,令x=0,可得a0 =1,再令x=$\frac{1}{3}$,可得a0+$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$的值,從而求出要求的結(jié)果.

解答 解:∵(1-3x)2016=a0+a1x+…+a2016x2016(x∈R),
令x=0,可得a0 =1,
再令x=$\frac{1}{3}$,可得a0+$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$=0,
∴$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$=0-a0=-1.
故選:A.

點評 本題主要考查了二項式定理的應(yīng)用問題,解題時應(yīng)根據(jù)代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列對應(yīng)為A到B的函數(shù)的是( 。
A.A=R,B={x|x>0},f:x→y=|x|B.A=Z,B=N*,f:x→y=x2
C.A=Z,B=Z,f:x→y=$\sqrt{x}$D.A=[-1,1],B={0},f:x→y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=[cos(x+$\frac{π}{4}$)+sin(x+$\frac{π}{4}$)][cos(x+$\frac{π}{4}$)-sin(x+$\frac{π}{4}$)]在一個周期內(nèi)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+4),則實數(shù)c的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.對具有線性相關(guān)關(guān)系的變量x、y,有一組觀測數(shù)據(jù)(xi,yi)(i=1,2,…,9),其回歸方程為y=$\frac{1}{10}$x+a,且x1+x2+…+x9=10,y1+y2+…+y9=19,則實數(shù)a的值是( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若[x]表示不大于的最大整數(shù),則使得[log21]+[log22]+…+[log2n]≥2008成立的正整數(shù)n的最小值是314.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.關(guān)于x的不等式x2-ax+a>0恒成立,則實數(shù)a的取值范圍為( 。
A.(-∞,0)∪(2,+∞)B.(0,2)C.(-∞,0)∪(4,+∞)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin2x.
(1)求函數(shù)f(x)的對稱軸及單調(diào)增區(qū)間;
(2)若α為銳角,且f($\frac{α}{2}$)=$\frac{3}{4}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若不等式|x-2|+|x+3|<a的解集為∅,則a的取值范圍為( 。
A.(2,+∞)B.[-3,+∞)C.(-∞,5]D.(-∞,-3)

查看答案和解析>>

同步練習(xí)冊答案