10.化簡:$\frac{1}{cos2θ}$-tanθtan2θ=1.

分析 利用同角三角函數(shù)基本關(guān)系式切化弦,再利用二倍角公式化簡即可求值.

解答 解:$\frac{1}{cos2θ}$-tanθtan2θ
=$\frac{1}{cos2θ}$-$\frac{sinθ•2sinθcosθ}{cosθ•cos2θ}$
=$\frac{1}{cos2θ}$-$\frac{2si{n}^{2}θ}{cos2θ}$
=$\frac{co{s}^{2}θ-si{n}^{2}θ}{cos2θ}$
=$\frac{cos2θ}{cos2θ}$
=1.
故答案為:1.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知不等式2x+4$\sqrt{xy}$≤a(x+y)對任意正數(shù)x,y都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓的方程為x2+y2-6x=0,過點(1,2)的該圓的三條弦的長a1,a2,a3構(gòu)成等差數(shù)列,則數(shù)列a1,a2,a3的公差的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=x3+lg($\sqrt{{x}^{2}+1}$+x),若f(x)的定義域中的a、b滿足f(-a)+f(-b)-3=f(a)+f(b)+3,則f(a)+f(b)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|x2-6x+5<0},集合B={x||x-a|<1}.
(1)若a=1,求A∪B;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知正項等差數(shù)列{an}中,其前n項和為Sn,滿足2Sn=an•an+1
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{S}_{n}-1}{{2}^{{a}_{n}}}$,Tn=b1+b2+…+bn,求證:Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=emx+x2-mx(x∈R),討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若$\frac{x}{{x}^{2}+x+1}=\frac{1}{5}$,求$\frac{{x}^{2}}{{x}^{4}{+x}^{2}+1}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知一個總體中有100個個體,將其隨機編號為0,1,2,…10.現(xiàn)用系統(tǒng)抽樣法抽取一個容量為10的樣本,規(guī)定如果在第1組中隨機抽取的號碼為m,那么在第k組抽取的號碼的個位數(shù)字與m+k的個位數(shù)字相同.若m=6,則在第7組中抽取的號碼為( 。
A.63B.66C.73D.76

查看答案和解析>>

同步練習(xí)冊答案