3.(1-$\root{3}{x}$)7的展開式中x2的系數(shù)為7.

分析 在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于2,求出r的值,即可求得展開式中x2的系數(shù).

解答 解:由于(1-$\root{3}{x}$)7的展開式的通項(xiàng)公式為Tr+1=${C}_{7}^{r}$•(-1)r•${x}^{\frac{r}{3}}$,
令$\frac{r}{3}$=2,求得r=6,可得展開式中x2的系數(shù)為${C}_{7}^{6}$=7,
故答案為:7.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}中,a1=1,a2=2,an=an-1-an-2(n∈N*,n≥3),則a2006=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出平面區(qū)域?yàn)閳D中四邊形ABOC內(nèi)部及其邊界,目標(biāo)函數(shù)為z=ax-y,若當(dāng)且僅當(dāng)x=1,y=1時(shí),目標(biāo)函數(shù)z取最小值,則實(shí)數(shù)a的取值范圍是$-1<a<-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax+b(a>0,a≠1)滿足f(x+y)=f(x)•f(y),且f(3)=8.
(1)求實(shí)數(shù)a,b的值; 
(2)若不等式|x-1|<m的解集為(b,a),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y+2≥0}\\{x≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{y}{x+1}$的取值范圍是(  )
A.[-2,0]B.(-∞,-2]∪[0,+∞)C.[0,2]D.(-∞,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知AC⊥BC,AC=BC,D滿足$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(1-t)$\overrightarrow{CB}$,若∠ACD=60°,則t的值為( 。
A.$\frac{\sqrt{3}-1}{2}$B.$\sqrt{3}$-$\sqrt{2}$C.$\sqrt{2}$-1D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.(文科)已知函數(shù)f(n),n∈N*,且f(n)∈N*.若f(n)+f(n+1)+f(f(n))=3n+1,f(1)≠1,則f(6)=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-4,數(shù)列{bn}滿足bn+1-bn=1,其n項(xiàng)和為Tn,且T2+T6=32.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若不等式nlog2(Sn+4)≥λbn+3n-7對任意的n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.近期霧霾天氣多發(fā),對城市環(huán)境造成很大影響,某城市環(huán)保部門加強(qiáng)了對空氣質(zhì)量的監(jiān)測.按國家環(huán)保部發(fā)布的(環(huán)境空氣質(zhì)量標(biāo)準(zhǔn))規(guī)定,居民區(qū)的PM2.5(大氣中直徑小于或等于2.5微米的顆粒物)年平均濃度不得超過35微克/立方米,PM2.5的24小時(shí)平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)記錄如圖1莖葉圖
(1)完成如下的頻率分布表,并在所給的坐標(biāo)系(圖2)中畫出(0,100)的頻率分布直方圖;
(2)從樣本中PM2.5的24小時(shí)平均濃度超過50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過75微克/立方米的概率.
組別PM2.5濃度(微克/立方米)頻數(shù)(天)頻率
第一組(0,25]
第二組(25,50]
第三組(50,75]
第四組(75,100]

查看答案和解析>>

同步練習(xí)冊答案