1.若$\overrightarrow{AB}$=(-2,5),B(1,-3),則A點(diǎn)的坐標(biāo)為(3,-8).

分析 利用$\overrightarrow{OA}$=$\overrightarrow{OB}-\overrightarrow{AB}$即可得出.

解答 解:∵$\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$,
∴$\overrightarrow{OA}$=$\overrightarrow{OB}-\overrightarrow{AB}$=(1,-3)-(-2,5)=(3,-8),
故答案為:(3,-8).

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算性質(zhì),考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.有兩件事和四個(gè)圖象,兩件事為:①我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是返回家找到作業(yè)本再上學(xué);②我出發(fā)后,心情輕松,緩緩前行,后來(lái)為了趕時(shí)間開始加速,四個(gè)圖象如下:

與事件①,②對(duì)應(yīng)的圖象分別為( 。
A.a,bB.a,cC.d,bD.d,c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x,y∈R,向量$\overrightarrow{a}$,$\overrightarrow$不共線,若(x+y-2)$\overrightarrow{a}$+(x-y+3)$\overrightarrow$=0,則x=$-\frac{1}{2}$,y=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.sin22°30′•cos22°30′的值為(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.利用導(dǎo)數(shù)的定義證明奇函數(shù)的導(dǎo)數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)數(shù)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.己知正項(xiàng)等比數(shù)列{an}滿足a1+a2=3,a2a3a4=64.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an(an+1),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.寫出下列各角終邊相同的角的集合,并把其中在-360°~720°范圍內(nèi)的角寫出來(lái):
(1)68°;
(2)155°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知點(diǎn)O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓C:$\frac{x^2}{3}+{y^2}$=1的左焦點(diǎn),點(diǎn)P、Q在橢圓上,點(diǎn)P、Q、R滿足$\overrightarrow{OF}$•$\overrightarrow{PQ}$=0,$\overrightarrow{QR}$+2$\overrightarrow{PQ}$=$\overrightarrow{0}$,則$\sqrt{3}|{PF}|+|{OR}$|的最大值為( 。
A.6B.$\sqrt{3}$(1+$\sqrt{2}$+$\sqrt{3}$)C.3+3$\sqrt{2}$D.3+3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列有關(guān)命題的說(shuō)法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.線性回歸直線方程y=bx+a恒過(guò)樣本中心$(\overline x,\overline y)$,且至少經(jīng)過(guò)一個(gè)樣本點(diǎn)
C.命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案