1.已知點(diǎn)O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓C:$\frac{x^2}{3}+{y^2}$=1的左焦點(diǎn),點(diǎn)P、Q在橢圓上,點(diǎn)P、Q、R滿足$\overrightarrow{OF}$•$\overrightarrow{PQ}$=0,$\overrightarrow{QR}$+2$\overrightarrow{PQ}$=$\overrightarrow{0}$,則$\sqrt{3}|{PF}|+|{OR}$|的最大值為( 。
A.6B.$\sqrt{3}$(1+$\sqrt{2}$+$\sqrt{3}$)C.3+3$\sqrt{2}$D.3+3$\sqrt{3}$

分析 由題意,P,Q關(guān)于x軸對稱,設(shè)P(x,y),則R(x,3y),用坐標(biāo)表示出$\sqrt{3}|{PF}|+|{OR}$|,再換元,即可求出$\sqrt{3}|{PF}|+|{OR}$|的最大值.

解答 解:由題意,P,Q關(guān)于x軸對稱,設(shè)P(x,y),則R(x,3y),
∵F(-$\sqrt{2}$,0),
∴$\sqrt{3}|{PF}|+|{OR}$|=$\sqrt{3}$•$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$+$\sqrt{{x}^{2}+9{y}^{2}}$=|$\sqrt{2}$x+3|+$\sqrt{9-2{x}^{2}}$,
設(shè)$\sqrt{2}$x=3cosα(0<α<π),則$\sqrt{3}|{PF}|+|{OR}$|=|3cosα+3|+3sinα=3+3$\sqrt{2}$sin(α+$\frac{π}{4}$)
∴sin(α+$\frac{π}{4}$)=1時(shí),$\sqrt{3}|{PF}|+|{OR}$|的最大值為3+3$\sqrt{2}$,
故選:C.

點(diǎn)評 本題考查求$\sqrt{3}|{PF}|+|{OR}$|的最大值,考查三角函數(shù)知識的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知隨機(jī)變量ξ服從正態(tài)分布N(1,1),若P(ξ<3)=0.977,則P(-1<ξ<3)=0.954.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若$\overrightarrow{AB}$=(-2,5),B(1,-3),則A點(diǎn)的坐標(biāo)為(3,-8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.-90°+k•360°(k∈z)表示的是(  )
A.第一象限角B.第三象限角C.界限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx+sin2ωx(ω>0)的最小正周期為π,將函數(shù)f(x)的圖象向右平移φ(φ>0)個(gè)單位后,得到的函數(shù)關(guān)于點(diǎn)(-$\frac{π}{4}$,$\frac{1}{2}$)對稱,則φ的值不可能為( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{5π}{3}$D.$\frac{7π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=2x,若存在x∈(-∞,0],使不等式f(x)+f(2x)≥m2-m成立,則實(shí)數(shù)m的取值范圍是m≥2或m≤-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+$\frac{1}{x}$(a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若{x|f(x)<0}⊆(0,e${\;}^{-\frac{1}{2}}$),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,三棱柱ABC-A1B1C1的側(cè)面AA1C1C是矩形,側(cè)面AA1C1C⊥側(cè)面AA1B1B,且AB=4AA1=4,∠BAA1=60°,D是AB的中點(diǎn).
(Ⅰ)求證:AC1∥平面CDB1;
(Ⅱ)求證:DA1⊥平面AA1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示,正方體ABCD-A1B1C1D1中,M,N分別為棱C1D1,C1C的中點(diǎn),以下四個(gè)結(jié)論中正確的是( 。
A.直線MN與DC1互相垂直B.直線AM與BN互相平行
C.直線MN與BC1所成角為90°D.直線MN垂直于平面A1BCD1

查看答案和解析>>

同步練習(xí)冊答案