19.給出如下四個判斷:
①?x0∈R.ex0≤0;③設(shè)a,b是實數(shù),a>1,b>1是ab>1的充要條件;
②?x∈R+,2x>x2;④命題“若p則q”的逆否命題是若¬q,則¬p.
其中正確的判斷個數(shù)是( 。
A.1B.2C.3D.4

分析 由指數(shù)函數(shù)的值域判斷①;由充分必要條件的判斷方法判斷B;舉例說明C錯誤;直接寫出命題的逆否命題判斷D.

解答 解:∵?x∈R,ex>0,∴①不正確;
當(dāng)x=2時,2x=x2,②不正確;
由ab>1,不能得到a>1,b>1,如a=$\frac{1}{2}$,b=2,③不正確;
命題“若p則q”的逆否命題是若¬q,則¬p,④正確.
∴正確的命題是1個.
故選:A.

點評 本題考查命題的真假判斷與應(yīng)用,考查命題的逆否命題,訓(xùn)練了充分必要條件的判斷方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如果圓x2+y2+Dx+Ey+F=0關(guān)于直線y=2x對稱.則D,E的關(guān)系為D2+E2-4F>0,D=2E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sin2(x+$\frac{π}{12}$)-sinxcosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)設(shè)銳角△ABC中角A,B,C所對的邊分別為a,b,c,f(B)=$\frac{1}{2}$,a+c=3,b=$\sqrt{5}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)x3=8,則f(x)=(x-1)(x+1)(x2+x+1)的值是( 。
A.7B.15C.35D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)對任意實數(shù)x均有f(x)=kf(x+2),其中常數(shù)k為負數(shù),且f(x)在區(qū)間[0,2]有表達式f(x)=x(x-2)
(I)求出f(-1),f(2.5)的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[-2,2]的最大值與最小值分別為m,n,且m-n=3,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知命題p:$\left\{\begin{array}{l}{x+2≥10}\\{x-10≤0}\end{array}\right.$,命題q:-m≤x≤1+m,若¬p是¬q的必要不充分條件,則實數(shù)m的取值范圍是m≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\frac{1}{1+x}$,g(x)=x2+2,則f[g(2)]=( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某籃球選手近五場比賽的上場時間分別為:9.7,9.9,10.1,10.2,10.1(單位:分鐘),則這組數(shù)據(jù)的方差為0.044.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等比數(shù)列{an}為遞增數(shù)列,且a52=a10,2(an+an+2)=5an+1,則數(shù)列{an}的通項公式an=(  )
A.2nB.2n+1C.($\frac{1}{2}$)nD.($\frac{1}{2}$)n+1

查看答案和解析>>

同步練習(xí)冊答案