【題目】已知函數(shù),.
(1)求函數(shù)在上的最小值;
(2)對一切,恒成立,求實(shí)數(shù)的取值范圍;
(3)探討函數(shù)是否存在零點(diǎn)?若存在,求出函數(shù)的零點(diǎn);若不存在,請說明理由.
【答案】(1) ;(2) ;(3) 函數(shù)無零點(diǎn).
【解析】
試題分析:(1)求函數(shù)的層數(shù)可得,并由導(dǎo)數(shù)的符號判斷函數(shù)的單調(diào)性可得函數(shù)在區(qū)間上的最小值為,分別討論當(dāng)與時函數(shù)在區(qū)間上的單調(diào)性與最小值即可;(2)對一切,恒成立,構(gòu)造函數(shù),求函數(shù)的最小值即可;(3)
,由(Ⅰ)知當(dāng)且僅當(dāng)時,的最小值是,構(gòu)造函數(shù),求其導(dǎo)數(shù),研究函數(shù)的單調(diào)性與最值可知,且兩個函數(shù)取得最大值點(diǎn)與最小值點(diǎn)時不相等,所以有,即兩個函數(shù)無公共點(diǎn),即函數(shù)無零點(diǎn).
試題解析: (Ⅰ),
由得,,由得,
函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.………………(1分)
當(dāng)時,;
當(dāng)時,在上單調(diào)遞增,,………………(2分)
………………(3分)
(Ⅱ)原問題可化為,………………(4分)
設(shè),
,當(dāng)時,在上單調(diào)遞減;…………(5分)
當(dāng)時,在上單調(diào)遞增;………………(6分)
,故的取值范圍為.………………(7分)
(Ⅲ)令,得,即,………………(8分)
當(dāng)(Ⅰ)知當(dāng)且僅當(dāng)時,的最小值是,…………(9分)
設(shè),則,易知在上單調(diào)遞增,在上單調(diào)遞減,
當(dāng)且僅當(dāng)時,取最大值,且,………………(10分)
對都有,即恒成立,
故函數(shù)無零點(diǎn).……………………(12分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),A(2,0),B(0,1)是它的兩個頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(1)若=6,求k的值;
(2)求四邊形AEBF面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用長為,寬為的長方形鐵皮做一個無蓋的容器.先在四角分別截去一個小正方形,然后把四邊翻轉(zhuǎn),再焊接而成(如圖).問該容器的高為多少時,容器的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)
(1)求函數(shù)g(x)的極大值;
(2)求證:1+++…+>ln(n+1)(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,兩焦點(diǎn),點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)如圖,動直線與橢圓有且僅有一個公共點(diǎn),點(diǎn)、是直線上的兩點(diǎn),且.求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),將的圖象向左平移個單位長度后得到的圖象,且在區(qū)間內(nèi)的最大值為.
(1)求實(shí)數(shù)的值;
(2)在中,內(nèi)角, , 的對邊分別是, , ,若,且,求的周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),,.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,的兩個極值點(diǎn)為,().
①證明:;
②若,恰為的零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
span>2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項(xiàng),.
(1)證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com