【題目】若四面體ABCD的三組對(duì)棱分別相等,即,,給出下列結(jié)論:

①四面體ABCD每組對(duì)棱相互垂直;

②四面體ABCD每個(gè)面的面積相等;

③從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于而小于;

④連接四面體ABCD每組對(duì)棱中點(diǎn)的線段相互垂直平分;

⑤從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱的長(zhǎng)可作為一個(gè)三角形的三邊長(zhǎng).

其中正確結(jié)論的序號(hào)是(

A.②④⑤B.①②④⑤C.①③④D.②③④⑤

【答案】A

【解析】

把該四面體補(bǔ)成一個(gè)長(zhǎng)方體,然后根據(jù)長(zhǎng)方體對(duì)每個(gè)命題進(jìn)行判斷.

由于四面體ABCD的三組對(duì)棱分別相等,因此可以把它補(bǔ)成一個(gè)長(zhǎng)方體,如圖.

由長(zhǎng)方體知:

長(zhǎng)方體的每個(gè)面是矩形,對(duì)角線不一定垂直,因此四面體的對(duì)棱不一定垂直,①錯(cuò);

四面體的四個(gè)面是全等三角形,因此面積相等,②正確;

由于四面體的四個(gè)面是全等三角形,因此每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和這180°,③錯(cuò);

由四面體每條棱中點(diǎn)是所在長(zhǎng)方體的面上的對(duì)角線交點(diǎn),長(zhǎng)方體對(duì)面對(duì)角線交點(diǎn)的連線互相垂直平分,即四面體每組對(duì)棱中點(diǎn)的連線段相互垂直平分,④正確;

四面體的每個(gè)面三角形的三邊長(zhǎng)就等于從同一點(diǎn)出發(fā)的三條棱的長(zhǎng)度,⑤正確.

因此有②④⑤正確.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的極坐標(biāo)方程;

2)將曲線上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短到原來(lái)的倍,得到曲線,若的交點(diǎn)為(異于坐標(biāo)原點(diǎn)),的交點(diǎn)為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2021年起,福建省高考將實(shí)行“3+1+2”新高考.“3”是統(tǒng)一高考的語(yǔ)文、數(shù)學(xué)和英語(yǔ)三門(mén);“1”是選擇性考試科目,由考生在物理、歷史兩門(mén)中選一門(mén);“2”也是選擇性考試科目,由考生從化學(xué)、生物、地理、政治四門(mén)中選擇兩門(mén),則某考生自主選擇的“1+2”三門(mén)選擇性考試科目中,歷史和政治均被選擇到的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCDE,F分別為ABCD的中點(diǎn),將△ADE沿DE折起,使△ACD為等邊三角形,如圖所示,記二面角A-DE-C的大小為.

1)證明:點(diǎn)A在平面BCDE內(nèi)的射影G在直線EF上;

2)求角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)同時(shí)滿足下列兩個(gè)條件:①對(duì)任意的恒有成立;②當(dāng)時(shí),.記函數(shù),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DAC的中點(diǎn),四邊形BDEF是菱形,平面平面ABC,

若點(diǎn)M是線段BF的中點(diǎn),證明:平面AMC;

求平面AEF與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若為單調(diào)函數(shù),求a的取值范圍;

2)若函數(shù)僅一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上、下焦點(diǎn)分別為,,離心率為,點(diǎn) 在橢圓C上,延長(zhǎng)交橢圓于N點(diǎn).

1)求橢圓C的方程;

2PQ為橢圓上的點(diǎn),記線段MN,PQ的中點(diǎn)分別為A,BAB異于原點(diǎn)O),且直線AB過(guò)原點(diǎn)O,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式(4kxk212k9)(2x11)>0,其中kR,對(duì)于不等式的解集A,記B=AZ(其中Z為整數(shù)集),若集合B是有限集,則使得集合B中元素個(gè)數(shù)最少時(shí)的實(shí)數(shù)k的取值范圍是__.

查看答案和解析>>

同步練習(xí)冊(cè)答案