分析 易得C(2+$\sqrt{2}$cosα,$\sqrt{2}$sinα)為圓心為(2,0)半徑為$\sqrt{2}$的圓M上的任意一點(diǎn),由直線和圓相切可得.
解答 解:∵$\overrightarrow{OA}$=(0,2),$\overrightarrow{OB}$=(2,0),$\overrightarrow{BC}$=($\sqrt{2}$cosα,$\sqrt{2}$sinα),
∴$\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{BC}$=(2+$\sqrt{2}$cosα,$\sqrt{2}$sinα),∴C(2+$\sqrt{2}$cosα,$\sqrt{2}$sinα),
∵C(2+$\sqrt{2}$cosα,$\sqrt{2}$sinα)為圓心為(2,0)半徑為$\sqrt{2}$的圓M上的任意一點(diǎn),
設(shè)y=kx為圓M的切線,則$\frac{|2k-0|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$,解得k=±1,
∴兩切線的傾斜角為45°和135°,
∴兩切線和y軸正半軸的夾角為135°和45°,
∴$\overrightarrow{OA}$與$\overrightarrow{OC}$成角的取值范圍為[$\frac{π}{4}$,$\frac{3π}{4}$].
故答案為:[$\frac{π}{4}$,$\frac{3π}{4}$]
點(diǎn)評(píng) 本題考查向量夾角的取值范圍,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com