已知,過雙曲線x2-
y2
3
=1的左焦點(diǎn)F1,做傾斜角為
π
4
的弦AB,求|AB|的長(zhǎng).
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的左焦點(diǎn),設(shè)出直線方程,聯(lián)立雙曲線方程,消去y,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,即可得到.
解答: 解:雙曲線x2-
y2
3
=1的a=1,b=
3
,則c=2,
則左焦點(diǎn)F1(-2,0),直線AB的方程為:y=tan
π
4
(x+2),
即y=x+2,
代入雙曲線方程,得,2x2-4x-7=0,
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=2,x1x2=-
7
2
,
則|AB|=
2
(x1+x2)2-4x1x2

=
2
4+14
=6.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查直線方程和雙曲線方程聯(lián)立,消去未知數(shù),運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正六邊形ABCDEF的兩個(gè)頂點(diǎn)A、D為橢圓C的兩個(gè)焦點(diǎn),其余4個(gè)頂點(diǎn)在橢圓C上.若橢圓C的面積為
3+2
3
,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ln(x+1)-2
x
的零點(diǎn)所在的區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在函數(shù)y=x3-9x的圖象上,滿足在該點(diǎn)處的切線傾斜角小于
π
4
,且橫、縱坐標(biāo)都為整數(shù)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x
1
2
+x-
1
2
=3,求
x
3
2
+x-
3
2
+17
x2+x-2-12
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2-8x+15
x2-x-6
的值域是 ( 。
A、(-∞,1)
B、(-∞,1)∪(1,+∞)
C、(-∞,-
2
5
)∪(-
2
5
,+∞)
D、(-∞,-
2
5
)∪(-
2
5
,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某扇形面積為2cm2,周長(zhǎng)為6cm,求其半徑和圓心角的弧度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一流的高爾夫選手約70桿即可打完十八洞,而初學(xué)者約160桿才可打完十八洞.如圖是甲、乙兩位高爾夫選手在五次訓(xùn)練測(cè)試中打出的桿數(shù)的莖葉圖,則發(fā)揮比較穩(wěn)定的選手的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=kn2,若對(duì)所有的n∈N*,都有an+1>an,則實(shí)數(shù)k的取值范圍是( 。
A、k<0B、k<1
C、k>1D、k>0

查看答案和解析>>

同步練習(xí)冊(cè)答案