20.已知三棱錐O-ABC,點(diǎn)M,N分別為AB,OC的中點(diǎn),且$\overrightarrow{OA}$=$\vec a$,$\overrightarrow{OB}$=$\vec b$,$\overrightarrow{OC}$=$\vec c$,用$\vec a$,$\vec b$,$\vec c$表示$\overrightarrow{MN}$,則$\overrightarrow{MN}$等于( 。
A.$\frac{1}{2}(\vec b+\vec c-\vec a)$B.$\frac{1}{2}(\vec a+\vec b-\vec c)$)C.$\frac{1}{2}(\vec a-\vec b+\vec c)$D.$\frac{1}{2}(\vec c-\vec a-\vec b)$

分析 根據(jù)所給的圖形,在圖形中看出要求的向量可以怎么得到,用減法把向量先變化成已知向量的差的形式,再利用向量的加法法則,得到結(jié)果.

解答 解:由題意知$\overrightarrow{MN}$=$\overrightarrow{ON}$-$\overrightarrow{OM}$=$\frac{1}{2}$$\overrightarrow{OC}$-$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$)
∵$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,
∴$\overrightarrow{MN}$=$\frac{1}{2}$($\overrightarrow{c}$-$\overrightarrow$-$\overrightarrow{a}$)
故選:D.

點(diǎn)評(píng) 本題考查空間向量的加減法,本題解題的關(guān)鍵是在已知圖形中盡量的應(yīng)用幾何體的已知棱表示要求的結(jié)果,本題是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線方程為$\frac{x^2}{4}-{y^2}$=1,則該雙曲線的漸近線方程為$y=±\frac{1}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,長方形的四個(gè)頂點(diǎn)為O(0,2),A(4,0),B(4,2),C(0,2),曲線y=$\sqrt{x}$經(jīng)過點(diǎn)B.現(xiàn)將一質(zhì)點(diǎn)隨機(jī)投入長方形OABC中,則質(zhì)點(diǎn)落在圖中陰影區(qū)域的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≤x-2}.
(1)求A∩(∁UB);
(2)若函數(shù)f(x)=lg(2x+a)的定義域?yàn)榧螩,滿足A⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一條弦所在直線的方程x-y-3=0,弦的中點(diǎn)坐標(biāo)為(2,-1),求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.我;@球隊(duì)曾多次獲得全國中學(xué)生籃球賽冠軍!在一次比賽中,需把包括我;@球隊(duì)在內(nèi)的7個(gè)籃球隊(duì)隨機(jī)地分成兩個(gè)小組(一組3個(gè)隊(duì),一組4個(gè)隊(duì))進(jìn)行小組預(yù)賽,則我;@球隊(duì)和另6個(gè)隊(duì)中實(shí)力最強(qiáng)的隊(duì)分在同一小組的概率為$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.從一個(gè)正方體的6個(gè)面中任取2個(gè),則這2個(gè)面恰好互相平行的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.有4位同學(xué)在同一天的上午、下午參加“身高與體重”、“立定跳遠(yuǎn)”、“肺活量”、“握力”、“臺(tái)階”五個(gè)項(xiàng)目的測(cè)試,每位同學(xué)測(cè)試兩個(gè)項(xiàng)目,分別在上午和下午,且每人上午和下午測(cè)試的項(xiàng)目不能相同.若上午不測(cè)“握力”,下午不測(cè)“臺(tái)階”,其余項(xiàng)目上午、下午都各測(cè)試一人,則不同的安排方式的種數(shù)為( 。
A.264B.72C.266D.274

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一程序框圖如圖所示,如果輸出的函數(shù)值在區(qū)間[1,2]內(nèi),那么輸入實(shí)數(shù)x的取值范圍是(  )
A.(-∞,0)B.[-1,0]C.[1,+∞)D.[0,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案