14.已橢圓方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$,則該橢圓的焦距為( 。
A.10B.8C.6D.3

分析 橢圓方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$,可得a,b,c=$\sqrt{{a}^{2}-^{2}}$,即可得出焦距.

解答 解:橢圓方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$,∴a=5,b=4,
c=$\sqrt{{a}^{2}-^{2}}$=3,
則該橢圓的焦距=2c=6.
故選:C.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線l過點(1,-2),且與直線2x+3y-1=0垂直,則l的方程是( 。
A.2x+3y+4=0B.2x+3y-8=0C.3x-2y-7=0D.3x-2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}+2x-15)$的單調(diào)遞增區(qū)間是( 。
A.(-1,+∞)B.(3,+∞)C.(-∞,-1)D.(-∞,-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等比數(shù)列{an}中,an>0,a2a6+2a4a5+a52=25,那么a4+a5=( 。
A.3B.±5C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題的否定為假命題的是( 。
A.?x∈R,x2+2x+2≤0B.任意一個四邊形的四個頂點共圓
C.?x∈R,sin2x+cos2x=1D.所有能被3整除的整數(shù)都是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,以O(shè)為圓心的圓與直線$\sqrt{2}x+y-3\sqrt{3}=0$相切.
(1)求圓O的方程;
(2)直線l:y=kx+4與圓O交于A,B兩點,在圓O上是否存在一點M,使得△OAM與△OBM都為等邊三角形?若存在,求出此時直線l的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(2x+1)=4x+2,求f(x)的解析式y(tǒng)=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集U={x∈N*|x≤4},集合A={1,4},B={2,4},則∁U(A∩B)=(  )
A.{1,2,3}B.{1,2,4}C.{1,4,3}D.{2,4,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知各項均為正數(shù)的等差數(shù)列{an}的前20項和為100,那么a1•a20的最大值是(  )
A.50B.25C.100D.$2\sqrt{20}$

查看答案和解析>>

同步練習(xí)冊答案