17.等比數(shù)列{an}的前n項和為Sn=32-n-t(n∈N*),則實數(shù)t的值為9.

分析 由題意可表示數(shù)列的前3項,由等比數(shù)列可得t的方程,解方程可得.

解答 解:∵等比數(shù)列{an}的前n項和為Sn=32-n-t,
∴a1=S1=3-t,a2=S2-S1=(32-2-t)-(32-1-t)=-2;
a3=S3-S2=(32-3-t)-(32-2-t)=-$\frac{2}{3}$,
由等比數(shù)列可得(-2)2=-$\frac{2}{3}$(3-t),解得t=9,
故答案為:9.

點評 本題考查等比數(shù)列的求和公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.“m<$\frac{1}{2}$”是“關(guān)于x的一元二次方程x2+x+m=0有實數(shù)解”的必要不充分條件(從“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中選一個)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知三棱錐P-ABC中,△ABC為等邊三角形,PA=PB=PC,PA⊥PB,點P到平面ABC的距離為2$\sqrt{3}$,則三棱錐P-ABC的體積為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在梯形ABCD中,AB∥CD,AB=4,AD=3,CD=2,$\overrightarrow{AM}$=2$\overrightarrow{MD}$,若$\overrightarrow{AC}$•$\overrightarrow{BM}$=-3,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)y=$\frac{1}{2}$sin(2x+θ),θ∈(π,2π)的圖象關(guān)于y軸對稱,則θ的值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知離散型隨機(jī)變量X的分布列如下:
X012
Pa4a5a
則均值E(X)與方差D(X)分別為(  )
A.1.4,0.2B.0.44,1.4C.1.4,0.44D.0.44,0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.過拋物線C:y2=2px(p>0)的焦點F且傾斜角為45°的直線交C于A,B兩點,若以AB為直徑的圓被x軸截得的弦長為16$\sqrt{3}$,則p的值為( 。
A.8B.8$\sqrt{3}$C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a∈R,不等式組$\left\{\begin{array}{l}{x-y≥-1}\\{x+2y≥2}\\{3x+ay≤6}\end{array}\right.$表示的平面區(qū)域為Ω,若a=2,則Ω的面積為$\frac{6}{5}$,若Ω為三角形,則實數(shù)a的取值范圍為(-3,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知隨機(jī)變量X只能取三個值x1,x2,x3,其概率值依次成等差數(shù)列,求公差d的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案