分析 設底面邊長為a,利用勾股定理計算棱錐的側棱長,根據勾股定理列方程解出a,再計算棱錐的體積.
解答 解:設P在底面ABC的投影為O,
∵PA=PB=PC,△ABC是等邊三角形,
∴O是△ABC的中心,
設△ABC的邊長為a,則BD=$\frac{\sqrt{3}}{2}a$,∴OB=$\frac{2}{3}BD$=$\frac{\sqrt{3}}{3}a$.
∴PB=$\sqrt{P{O}^{2}+O{B}^{2}}$=$\sqrt{12+\frac{{a}^{2}}{3}}$.
∵PA⊥PB,∴PA2+PB2=AB2,
即12+$\frac{{a}^{2}}{3}$+12+$\frac{{a}^{2}}{3}$=a2,
解得a=6$\sqrt{2}$.
∴VP-ABC=$\frac{1}{3}{S}_{△ABC}•PO$=$\frac{1}{3}×\frac{\sqrt{3}}{4}{a}^{2}×2\sqrt{3}=\frac{{a}^{2}}{2}$=36.
故答案為:36.
點評 本題考查了正三棱錐的結構特征和體積計算,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | x*y=x1y1+2x2y2 | B. | x*y=x1y1-x2y2 | C. | x*y=x1y1+x2y2+1 | D. | x*y=2x1x2+y1y2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1+$\sqrt{2}$ | B. | $\frac{1}{2}$+$\sqrt{2}$ | C. | 1+$\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}+\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com