6.如圖所示,網(wǎng)格紙上小正方形的邊長為1cm,粗實線為某空間幾何體的三視圖,則該幾何體的體積為( 。 
A.2 cm3B.4 cm3C.6 cm3D.8 cm3

分析 幾何體為四棱錐,棱錐底面為直角梯形,棱錐的高為2,代入體積公式計算即可.

解答 解:由三視圖可知幾何體為四棱錐,棱錐的底面為直角梯形,底面$\frac{1}{2}×(2+4)×2$=6,棱錐的高為h=2,
∴棱錐的體積V=$\frac{1}{3}$Sh=$\frac{1}{3}×6×2$=4.
故選:B.

點評 本題考查了棱錐的三視圖和體積計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},則B的子集個數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=4x-m•2x+1+8.
(Ⅰ)當(dāng)m=3時,求方程f(x)=0的解;
(Ⅱ)若x∈[0,1],求函數(shù)f(x)的最小值g(m)(用m表示);
(Ⅲ)討論函數(shù)f(x)在實數(shù)集R上的零點的個數(shù),并求出零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對角線的長為$\sqrt{3}$的正方體的表面積為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知四棱錐P-ABCD的底面為直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1.
(1)求證:平面PAD⊥平面PCD;
(2)求直線AC與直線PB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知某幾何體的三視圖如圖所示,則該幾何體的表面積(  )
A.6B.$6+2\sqrt{3}$C.$8+8\sqrt{2}$D.$4+4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)={log_{\frac{π}{2}}}$x+sinx-2在區(qū)間$(0,\frac{π}{2}]$上的零點個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若拋物線y2=2px的焦點與雙曲線$\frac{{x}^{2}}{3}$-y2=1的右焦點重合,則該拋物線的準(zhǔn)線方程為x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=(sinx-cosx)sinx,x∈R,則f(x)的最小正周期是( 。
A.πB.C.$\frac{π}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案