9.設(shè)f(x)為一次函數(shù),且f[f (x)]=4x+3,則f (x)的解析式f(x)=2x+1,或f(x)=-2x-3.

分析 根據(jù)f(x)為一次函數(shù),從而可設(shè)f(x)=ax+b,從而得到f[f(x)]=a2x+ab+b=4x+3,這便可得到$\left\{\begin{array}{l}{{a}^{2}=4}\\{ab+b=3}\end{array}\right.$,從而解出a,b,便可得出f(x)的解析式.

解答 解:設(shè)f(x)=ax+b,則:
f[f(x)]=f(ax+b)=a(ax+b)+b=a2x+ab+b=4x+3;
∴$\left\{\begin{array}{l}{{a}^{2}=4}\\{ab+b=3}\end{array}\right.$;
∴$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.,或\left\{\begin{array}{l}{a=-2}\\{b=-3}\end{array}\right.$;
∴f(x)=2x+1,或f(x)=-2x-3.
故答案為:f(x)=2x+1,或f(x)=-2x-3.

點(diǎn)評(píng) 考查一次函數(shù)的一般形式,待定系數(shù)法求函數(shù)解析式,以及多項(xiàng)式相等時(shí),對(duì)應(yīng)項(xiàng)系數(shù)相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合M={y|y=x2+1,x∈R},集合N={y|y=ln(x+1)+1,x∈R},則M∩N等于( 。
A.{(0,1)}B.(0,1)C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知拋物線C1:y=$\frac{1}{4}{x^2}$,圓C2:x2+(y-1)2=1,過點(diǎn)P(t,0)(t>0)作不過原點(diǎn)O的直線PA,PB分別與拋物線C1和圓C2相切,A,B為切點(diǎn).
(1)求點(diǎn)A,B的坐標(biāo);
(2)求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求下列函數(shù)的值域:
(1)y=$\sqrt{x}$+1;   
(2)y=-x2+4x-7(x∈[0,3])    
(3)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知正項(xiàng)數(shù)列{an}滿足${a_1}=1,{a_2}=2,2a_n^2=a_{n-1}^2+a_{n-1}^2(n≥2)$,則a6=( 。
A.2B.±2C.±4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等差數(shù)列{an}中,已知a1,a4為方程2x2-5x+2=0的兩根,則a2+a3=( 。
A.1B.5C.$\frac{1}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=alnx-x+4,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)在$x∈[{\frac{1}{2},4}]$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知等比數(shù)列{an}是遞增數(shù)列,a2a5=32,a3+a4=12,又?jǐn)?shù)列{bn}滿足bn=2log2an+1,Sn是數(shù)列{bn}的前n項(xiàng)和
(1)求Sn;
(2)若對(duì)任意n∈N+,都有$\frac{S_n}{a_n}≤\frac{S_k}{a_k}$成立,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)f(x)滿足f(0)=1,且f(x+1)-f(x)=2x.
(1)求f(x)的解析式;
(2)若g(x)=f(logax)(a>0且a≠1),$x∈[{a,\;\;\frac{1}{a}}]$,試求g(x)的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案