分析 (1)由直線PA的斜率存在,設(shè)切線PA的方程為:y=k(x-t)(k≠0),與拋物線方程聯(lián)立化為x2-4kx+4kt=0,利用△=0,解得k=t,可得A坐標(biāo).圓C2的圓心D(0,1),設(shè)B(x0,y0),由題意可知:點(diǎn)B與O關(guān)于直線PD得出,可得$\left\{\begin{array}{l}{\frac{{y}_{0}}{2}=-\frac{{x}_{0}}{2t}+1}\\{{x}_{0}t-{y}_{0}=0}\end{array}\right.$,解得B坐標(biāo).
(2)由(1)可得:(t2-1)x-2ty+2t=0,可得點(diǎn)P到直線AB的距離d,又|AB|=$\sqrt{(\frac{2t}{1+{t}^{2}}-2t)^{2}+(\frac{2{t}^{2}}{1+{t}^{2}}-{t}^{2})^{2}}$=t2.即可得出S△PAB.
解答 解:(1)由直線PA的斜率存在,設(shè)切線PA的方程為:y=k(x-t)(k≠0),聯(lián)立拋物線,化為x2-4kx+4kt=0,
∵△=16k2-16kt=0,解得k=t,
∴x=2t,∴A(2t,t2).
圓C2的圓心D(0,1),設(shè)B(x0,y0),由題意可知:點(diǎn)B與O關(guān)于直線PD得出$\left\{\begin{array}{l}{\frac{{y}_{0}}{2}=-\frac{{x}_{0}}{2t}+1}\\{{x}_{0}t-{y}_{0}=0}\end{array}\right.$,
∴解得x0=$\frac{2t}{1+{t}^{2}}$,y0=$\frac{2{t}^{2}}{1+{t}^{2}}$.
∴B($\frac{2t}{1+{t}^{2}}$,$\frac{2{t}^{2}}{1+{t}^{2}}$).
(2)由(1)可得:kAB=$\frac{{t}^{2}-1}{2t}$,直線AB的方程為:y-t2=$\frac{{t}^{2}-1}{2t}$(x-2t),化為(t2-1)x-2ty+2t=0,
∴點(diǎn)P到直線AB的距離d=$\frac{|({t}^{2}-1)t+2t|}{\sqrt{({t}^{2}-1)^{2}+(-2t)^{2}}}$=t,
又|AB|=$\sqrt{(\frac{2t}{1+{t}^{2}}-2t)^{2}+(\frac{2{t}^{2}}{1+{t}^{2}}-{t}^{2})^{2}}$=t2.
∴S△PAB=$\frac{1}{2}{t}^{3}$.
點(diǎn)評(píng) 本小題主要考查拋物線、直線與拋物線及其圓的位置關(guān)系及其性質(zhì)、垂直平分線的性質(zhì)、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
學(xué)生 | 1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) |
投中次數(shù) | 6 | 7 | 7 | 8 | 7 |
A. | 2 | B. | 0.4 | C. | 4 | D. | 0. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com