【題目】已知橢圓在左右焦點(diǎn)分別為,,動(dòng)點(diǎn)在橢圓,的周長(zhǎng)為6,且面積的最大值為.

(1)求的方程;

(2)設(shè)直線的另一個(gè)交點(diǎn)為,過(guò),分別作直線的垂線垂足為,,軸的交點(diǎn)為.,的面積成等差數(shù)列,求直線斜率的取值范圍.

【答案】(1);(2)

【解析】

(1)由題意列關(guān)于a,b的方程組,即可得到的方程;

(2) 設(shè)直線的方程為,聯(lián)立方程可得,利用韋達(dá)定理表示條件,以,進(jìn)而得到直線斜率的取值范圍.

(1)因?yàn)?/span>上的點(diǎn),且,的左、右焦點(diǎn),所以

又因?yàn)?/span>,的周長(zhǎng)為6,

所以,

當(dāng)為短軸端點(diǎn)時(shí),的面積最大,

所以

又因?yàn)?/span>,解得,,,

所以的方程為.

(2)依題意,直線軸不重合,故可設(shè)直線的方程為,

消去得:,

設(shè),則有,.

設(shè),,的面積分別為,,

因?yàn)?/span>,,成等差數(shù)列,所以,即,

,

,得

,,于是,

所以,由,解得

設(shè)直線的斜率為,則,所以,

解得

所以直線斜率的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD的一邊CD內(nèi)任取一點(diǎn)E,過(guò)E作對(duì)角線AC的平行線,交對(duì)角線BD于點(diǎn)G、交邊AD于點(diǎn)H、交邊BA的延長(zhǎng)線于點(diǎn)F,聯(lián)結(jié)BH交DF于點(diǎn)M求證:

(1)C、G、M三點(diǎn)共線;

(2)C、E、M、F四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),軸上的點(diǎn),若是以為斜邊的等腰直角三角形, 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】最近的一次數(shù)學(xué)競(jìng)賽共6道試題,每題答對(duì)得7分,答錯(cuò)(或不答)0.賽后某參賽代表隊(duì)獲團(tuán)體總分161分,且統(tǒng)計(jì)分?jǐn)?shù)時(shí)發(fā)現(xiàn):該隊(duì)任兩名選手至多答對(duì)兩道相同的題目.沒(méi)有三名選手都答對(duì)兩道相同的題目.試問(wèn)該隊(duì)選手至少有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣共有90間農(nóng)村淘寶服務(wù)站,隨機(jī)抽取5間,統(tǒng)計(jì)元旦期間的網(wǎng)購(gòu)金額(單位:萬(wàn)元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).若網(wǎng)購(gòu)金額(單位:萬(wàn)元)不小于18的服務(wù)站定義為優(yōu)秀服務(wù)站,其余為非優(yōu)秀服務(wù)站.從隨機(jī)抽取的5間服務(wù)站中再任取2間作網(wǎng)購(gòu)商品的調(diào)查,則恰有1間是優(yōu)秀服務(wù)站的概率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次投籃測(cè)試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒(méi)有命中得0分;在B點(diǎn)命中的概率為,命中一次記2分,沒(méi)有命中得0分,用隨機(jī)變量表示該選手一次投籃測(cè)試的累計(jì)得分,如果的值不低于3分,則認(rèn)為其通過(guò)測(cè)試并停止投籃,否則繼續(xù)投籃,但一次測(cè)試最多投籃3.

(1)若該選手選擇方案甲,求測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望.

(2)試問(wèn)該選手選擇哪種方案通過(guò)測(cè)試的可能性較大?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以橢圓的2個(gè)焦點(diǎn)與1個(gè)短軸端點(diǎn)為頂點(diǎn)的三角形的面積為2。

(1)求橢圓的方程;

(2)如圖,斜率為k的直線l過(guò)橢圓的右焦點(diǎn)F,且與橢圓交與A,B兩點(diǎn),以線段AB為直徑的圓截直線x=1所得的弦的長(zhǎng)度為,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),我國(guó)工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計(jì)了近十年(從2008年到2017年)的工業(yè)增加值(萬(wàn)億元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序號(hào)

1

2

3

4

5

6

7

8

9

10

工業(yè)增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

5.5

20.6

82.5

211.52

129.6

(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對(duì)工業(yè)增加值(萬(wàn)億元)與年份序號(hào)的回歸方程類(lèi)型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請(qǐng)計(jì)算其擬合指數(shù),并用數(shù)據(jù)說(shuō)明哪位研究人員的函數(shù)類(lèi)型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).

(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計(jì)值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);

(3)預(yù)測(cè)到哪一年的工業(yè)增加值能突破30萬(wàn)億元大關(guān).

附:樣本 的相關(guān)系數(shù),

,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201912月份,我國(guó)湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會(huì)出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了增強(qiáng)居民防護(hù)意識(shí),增加居民防護(hù)知識(shí),某居委會(huì)利用網(wǎng)絡(luò)舉辦社區(qū)線上預(yù)防新冠肺炎知識(shí)答題比賽,所有居民都參與了防護(hù)知識(shí)網(wǎng)上答卷,最終甲、乙兩人得分最高進(jìn)入決賽,該社區(qū)設(shè)計(jì)了一個(gè)決賽方案:①甲、乙兩人各自從個(gè)問(wèn)題中隨機(jī)抽個(gè).已知這個(gè)問(wèn)題中,甲能正確回答其中的個(gè),而乙能正確回答每個(gè)問(wèn)題的概率均為,甲、乙兩人對(duì)每個(gè)問(wèn)題的回答相互獨(dú)立、互不影響;②答對(duì)題目個(gè)數(shù)多的人獲勝,若兩人答對(duì)題目數(shù)相同,則由乙再?gòu)氖O碌?/span>道題中選一道作答,答對(duì)則判乙勝,答錯(cuò)則判甲勝.

1)求甲、乙兩人共答對(duì)個(gè)問(wèn)題的概率;

2)試判斷甲、乙誰(shuí)更有可能獲勝?并說(shuō)明理由;

3)求乙答對(duì)題目數(shù)的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案