16.已知函數(shù)f(x)=x2+2x+2,x∈[-1,2],則函數(shù)f(x)的最大值是10.

分析 結(jié)合二次函數(shù)的圖象和性質(zhì),分析函數(shù)f(x)=x2+2x+2,x∈[-1,2]的單調(diào)性,進(jìn)而可得答案.

解答 解:函數(shù)f(x)=x2+2x+2的圖象是開口朝上,且以直線x=-1為對稱軸的拋物線,
當(dāng)x∈[-1,2]時,函數(shù)為增函數(shù),
故當(dāng)x=2時,函數(shù)取最大值10,
故答案為:10.

點(diǎn)評 本題考查的知識點(diǎn)是二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓C:(x-3)2+(y-2)2=2,直線l:3x+4y-12=0,直線l與圓C相交于M、N兩點(diǎn),求直線l被圓C所截得的弦長MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若平面α∥平面β,l?α,則l與β的位置關(guān)系是( 。
A.l與β相交B.l與β平行C.l在β內(nèi)D.無法判定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法中正確的是( 。
①一個平面內(nèi)只有一對不共線的向量可作為基底;
②兩個非零向量平行,則它們所在直線平行;
③△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}>0$,則△ABC為銳角三角形;
④△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}<0$,則△ABC為鈍角三角形.
A.B.C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若圓C的圓心坐標(biāo)為(2,-3),且圓C經(jīng)過點(diǎn)M(5,-7),則圓C的半徑為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(α)=$\frac{sin(π-α)cos(2π-α)sin(\frac{π}{2}-α)}{cos(-π-α)cos(\frac{π}{2}-α)}$
(1)化簡f(α);
(2)當(dāng)α=$\frac{π}{3}$時,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.命題“?x>0,x2-1<0”的否定是?x>0,x2-1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,直線AC1與平面BCC1B1所成角的余弦值等于( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{10}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若集合A={x|x2+x-6=0},B={x2+x+a=0},且A∩B=B,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

同步練習(xí)冊答案