7.已知△ABC中,a=2,b=4,c=60°,則三角形的形狀為( 。
A.鈍角三角形B.銳角三角形C.直角三角形D.等邊三角形

分析 由已知及余弦定理可求得c的值,可求a2+c2=b2,由勾股定理可得三角形為直角三角形.

解答 解:∵a=2,b=4,c=60°,
∴由余弦定理可得:c2=a2+b2-2abcosC=4+16-2×$2×4×\frac{1}{2}$=12,解得:c=2$\sqrt{3}$,
∴可得:a2+c2=4+12=16=b2,由勾股定理可得三角形為直角三角形.
故選:C.

點評 本題主要考查了余弦定理,勾股定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.終邊與x軸重合的角α的集合是( 。
A.{α|α=2kπ,k∈Z}B.{α|α=kπ,k∈Z}C.{α|α=$\frac{kπ}{2}$,k∈Z}D.{α|α=kπ+$\frac{π}{2}$,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}kx+2,\;x≥0\\{({\frac{1}{2}})^x},\;x<0\end{array}$,若函數(shù)y=f[f(x)]-$\frac{3}{2}$有且只有3個零點,則實數(shù)k的取值范圍是(-$\frac{1}{2}$,-$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.分別寫出經(jīng)過下列兩點的直線的方程:
(1)(1,3),(-1,2);
(2)(2,3),(0,2);
(3)(3,3),(3,4);
(4)(-2,3),(3,3);
(5)(0,3),(-2,0);
(6)(2,0),(0,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.i是虛數(shù)單位,b∈R,2+(b-1)i是實數(shù),則復(fù)數(shù)z=$\frac{b-2i}{b+2i}$在復(fù)平面內(nèi)表示的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.f(x)=2sin(-2x+$\frac{π}{3}$)的單調(diào)遞增區(qū)間為[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|2x+1|-|x-3|.
(1)解不等式f(x)≤4;
(2)若存在x使得f(x)+a≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知m∈R,函數(shù)f(x)=mx-$\frac{m-1}{x}$-lnx,g(x)=$\frac{1}{x}$+lnx.
(1)求g(x)在x=1處的切線方程;
(2)若y=f(x)-g(x)在[1,+∞)上為單調(diào)增函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知A(2,0),B(0,2),C(cosα,sinα),(0<α<π)
(Ⅰ)若|$\overrightarrow{OA}$$+\overrightarrow{OC}$|=$\sqrt{7}$(O為坐標(biāo)原點),求α;
(Ⅱ)若$\overrightarrow{AC}$$⊥\overrightarrow{BC}$,求sinα-cosα的值.

查看答案和解析>>

同步練習(xí)冊答案