9.設(shè)集合A={1,2,m2-m}.B={$\sqrt{{m}^{2}}$,1},C={x|x>lg$\frac{1-m}{{m}^{2}+1}$},B⊆A.
(1)求實數(shù)m的值;
(2)求A∩C.

分析 (1)利用B⊆A,分類討論求解m的值.
(2)求出集合C,然后求解A∩C.

解答 解:(1)集合A={1,2,m2-m}.B={$\sqrt{{m}^{2}}$,1},B⊆A.
可得2=$\sqrt{{m}^{2}}$,解得m=2(舍去)或m=-2舍去,
m2-m=$\sqrt{{m}^{2}}$,解得m=0或m=2(舍去).
綜上m=0.
(2)當m=0時,C={x|x>lg$\frac{1-m}{{m}^{2}+1}$}={x|x>0},
A∩C={1,2}.

點評 本題考查集合的基本運算,交集的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.二次函數(shù)y=x2-2x-1的對稱軸是x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知ab=$\frac{1}{4}$,a,b∈(0,1),則$\frac{1}{1-a}$+$\frac{2}{1-b}$的最小值為4+$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{m}$=(cosx,sinx)和$\overrightarrow{n}$=($\sqrt{2}$-sinx,cosx).
(1)設(shè)f(x)=$\overrightarrow{m}$,$\overrightarrow{n}$,求函數(shù)y=f($\frac{π}{3}$-2x)的最小正周期和對稱軸方程;
(2)若x∈[π,2π],求|$\overrightarrow{m}$-$\overrightarrow{n}$|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖.若輸出的S=$\frac{1023}{512}$,則判斷框內(nèi)的條件可以為(  )
A.i<10?B.i≤10?C.i<11?D.i≤11?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=$\frac{sinx+cosx}{1+sinxcosx}$,x∈[0,$\frac{π}{2}$],求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知lg2=a,lg3=b,則lg1.8=a+2b-1(用a,b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sin(x+$\frac{π}{3}$)=$\frac{1}{3}$,則cosx+cos($\frac{π}{3}$-x)的值為(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線l與直線l′:x+$\sqrt{3}$y=0垂直,垂足為O,過C的右焦點F分別作l,l′的垂線,垂足分別為N,P,若四邊形ONFP的面積為$\sqrt{3}$,則雙曲線C的方程為${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

同步練習(xí)冊答案