1.已知lg2=a,lg3=b,則lg1.8=a+2b-1(用a,b表示).

分析 直接利用導(dǎo)數(shù)的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:lg2=a,lg3=b,則lg1.8=lg9+lg0.2=2lg3+lg2-1=2b+a-1.
故答案為:a+2b-1.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在x≤0的條件下,求函數(shù)y=$\sqrt{8+2x-{x}^{2}}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在三棱錐P-ABC中,不能證明AP⊥BC的條件是(  )
A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)集合A={1,2,m2-m}.B={$\sqrt{{m}^{2}}$,1},C={x|x>lg$\frac{1-m}{{m}^{2}+1}$},B⊆A.
(1)求實(shí)數(shù)m的值;
(2)求A∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.點(diǎn)M(1,1)關(guān)于直線l:2x-y-6=0對(duì)稱點(diǎn)為N(a,b),則a+b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C的方程為x2+y2-6x-8y+24=0,從動(dòng)點(diǎn)P向圓C引切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),若|PM|=|PO|.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)求使|PM|最小的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)滿足f(2x)=x,則f(3)=( 。
A.0B.1C.log23D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lg(x-1)+$\frac{1}{\sqrt{32-{2}^{x}}}$的定義域是集合A,函數(shù)g(x)=-4x+2x+1+3的值域是集合B.
(1)求集合A,B;
(2)設(shè)集合C={x|2m<x<m+2},若C⊆(A∩B),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)學(xué)運(yùn)算中,常用符號(hào)來表示算式,如$\sum_{i=0}^{n}{a}_{i}$=a0+a1+a2+a3+…+an,其中i∈N,n∈N*
(Ⅰ)若a0、a1、a2、…an成等差數(shù)列,且a0=0,公差d=1,求證:$\sum_{i=0}^{n}$(aiC${\;}_{n}^{i}$)=n•2n-1
(Ⅱ)若$\sum_{k=1}^{2n}$(1+x)k=a0+a1x+a2x2+…+a2nx2k,bn=$\sum_{i=0}^{n}{a}_{2i}$,記dn=1+$\sum_{i=1}^{n}$[(-1)ibiC${\;}_{n}^{i}$]且不等式t•(dn-1)≤bn對(duì)于?n∈N*恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案