【題目】如圖,從一個(gè)面積為的半圓形鐵皮上截取兩個(gè)高度均為的矩形,并將截得的兩塊矩形鐵皮分別以,為母線卷成兩個(gè)高均為的圓柱(無底面,連接部分材料損失忽略不計(jì)).記這兩個(gè)圓柱的體積之和為.
(1)將表示成的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)求兩個(gè)圓柱體積之和的最大值.
【答案】(1).(2)
【解析】
(1)設(shè)半圓形鐵皮的半徑為r,自下而上兩個(gè)矩形卷成的圓柱的底面半徑分別為r1,r2,寫出y關(guān)于x的函數(shù)關(guān)系,并寫出x的取值范圍;
(2)利用導(dǎo)數(shù)判斷V(x)的單調(diào)性,得出V(x)的最大值.
(1)設(shè)半圓形鐵皮的半徑為,自下而上兩個(gè)矩形卷成的圓柱的底面半徑分別為,.
因?yàn)榘雸A形鐵皮的面積為,所以,即.
因?yàn)?/span>,所以,
同理,即.
所以卷成的兩個(gè)圓柱的體積之和.
因?yàn)?/span>,所以的取值范圍是.
(2)由,得,
令,因?yàn)?/span>,故
當(dāng)時(shí),;當(dāng)時(shí), ,
所以在上為增函數(shù),在上為減函數(shù),
所以當(dāng)時(shí),取得極大值,也是最大值.
因此的最大值為.
答:兩個(gè)圓柱體積之和的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)檢部門對(duì)某工廠甲、乙兩個(gè)車間生產(chǎn)的12個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過20克的為合格.
(1)從甲、乙兩車間分別隨機(jī)抽取2個(gè)零件,求甲車間至少一個(gè)零件合格且乙車間至少一個(gè)零件合格的概率;
(2)質(zhì)檢部門從甲車間8個(gè)零件中隨機(jī)抽取4件進(jìn)行檢測(cè),若至少2件合格,檢測(cè)即可通過,若至少3 件合格,檢測(cè)即為良好,求甲車間在這次檢測(cè)通過的條件下,獲得檢測(cè)良好的概率;
(3)若從甲、乙兩車間12個(gè)零件中隨機(jī)抽取2個(gè)零件,用表示乙車間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,其中, 為自然對(duì)數(shù)的底數(shù).
(1)設(shè)是函數(shù)的導(dǎo)函數(shù),討論的單調(diào)性;
(2)若關(guān)于的方程在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),從, 上分別取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
3 | -2 | 4 | ||
0 | -4 |
(1)求的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過定點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過拋物線與坐標(biāo)軸的三個(gè)交點(diǎn).
(1)求圓的方程;
(2)經(jīng)過點(diǎn)的直線與圓相交于,兩點(diǎn),若圓在,兩點(diǎn)處的切線互相垂直,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·江西聯(lián)考]交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 20 | 10 | 10 | 20 | 15 | 5 |
以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,.某同學(xué)家里有一輛該品牌車且車齡剛滿三年,記X為該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的圖像過點(diǎn),且在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com