17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)F1作圓x2+y2=a2的一條切線與雙曲線的漸近線在第二象限內(nèi)交于點(diǎn)A,同時(shí)這條切線交雙曲線的右支于點(diǎn)B,且|AB|=|BF2|,則雙曲線的漸近線的斜率為(  )
A.±2B.±$\sqrt{5}$C.±3D.±5

分析 由雙曲線的定義可得|BF1|-|BF2|=2a,結(jié)合條件可得|AF1|=2a,運(yùn)用勾股定理,結(jié)合a,b,c的關(guān)系,可得b=2a,進(jìn)而得到漸近線的斜率.

解答 解:由雙曲線的定義可得,
|BF1|-|BF2|=2a,
由|AB|=|BF2|,|BF1|=|AB|+|AF1|,
可得|AF1|=2a,
由點(diǎn)F1作圓x2+y2=a2的切線,可得:
|OF1|2=|OA|2+|AF1|2,
即有c2=a2+(2a)2=5a2,
可得b2=c2-a2=4a2
即b=2a,
即有漸近線的斜率為±$\frac{a}$=±2.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的漸近線的斜率,注意運(yùn)用圓的切線的性質(zhì),結(jié)合雙曲線的定義,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為e,則“e>$\sqrt{2}$”是“0<a<1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知等比數(shù)列{an}的前n項(xiàng)為和Sn,且a3-2a2=0,S3=7.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列$\left\{{\frac{n}{a_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為$\sqrt{5}$.則b=2,若以(2,1)為圓心,r為半徑的圓與該雙曲線的兩條漸近線組成的圖形只有一個(gè)公共點(diǎn),則半徑r=$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.雙曲線2x2-y2=6的焦距為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知F1、F2分別是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左、右焦點(diǎn),過(guò)點(diǎn)F2作漸近線的垂線,垂足為點(diǎn)A,若$\overrightarrow{{F_2}A}=2\overrightarrow{AB}$,且點(diǎn)B在以F1為圓心,|OF1|為半徑的圓內(nèi),則C的離心率取值范圍為(  )
A.$(\sqrt{5},+∞)$B.(2,+∞)C.(1,2)D.$(1,\sqrt{5})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.雙曲線C:x2-y2=1的焦點(diǎn)到漸近線的距離等于( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知關(guān)于x的不等式|x+1|≥kx的解集為R,則實(shí)數(shù)k的取值范圍為( 。
A.k≤0B.-1≤k≤0C.k≥0D.0≤k≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.從1,2,3,4中任取兩個(gè)數(shù),則其中一個(gè)數(shù)是另一個(gè)數(shù)兩倍的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案